CODE BLUE

OR HOW MIKEY DICKERSON ’01 HELPED RESUSCITATE THE PRESIDENT’S FLAT-LINING HEALTH CARE WEB

THE ASH HEAP OF SUCCESS
As an expert witness in an international biotech lawsuit, Professor Lenny Seligman expected to be challenged, but he didn’t expect to find his own DNA research on trial.
BY AUGUSTIN GURZA
24

THE MESSAGE IN THE SONG
A famed National Geographic writer looks inside the work of researchers decoding the chirps and trills of animals ranging from bats to prairie dogs.
BY VIRGINIA MORELL ’71
29

HACKERS
Hackathon: an overnight rush to create something that might become a startup, but is more likely to be recalled as one of those crazily fun things people do in college.
BY ROBYN NORWOOD
34
Even if you’re the kind of person who tells new acquaintances at dinner parties that you hate email and e-books, you probably recognize the words above as being some kind of computer code. You may even be able to work out, more or less, what this little ‘program’ does: it writes to the console of some system the line “Hello, world!”

A geek hunched over a laptop tapping frantically at the keyboard, neon-bright lines of green code sliding up the screen—the programmer at work is now a familiar staple of popular entertainment. The clipped shorthand and digits of programming languages are familiar even to civilians, if only as runic incantations charged with world-changing power. Computing has transformed all our lives, but the processes and cultures that produce software remain largely opaque, alien, unknown. This is certainly true within my own professional community of fiction writers—whenever I tell one of my fellow authors that I supported myself through the writing of my first novel by working as a programmer and a computer consultant, I evoke a response that mixes bemusement, bafflement and a touch of awe, as if I’d just said that I could levitate. Most of the artists I know—painters, film-makers, actors, poets—seek to regard programming as an esoteric scientific discipline; they are keenly aware of its cultural mystique, envious of its potential profitability.
and eager to extract metaphors, imagery and dramatic possibility from its history, but coding may as well be nuclear physics as far as relevance to their own daily practice is concerned.

Many programmers, on the other hand, regard themselves as artists. Since programmers create complex objects and care not just about function but also about beauty, they are just like painters and sculptors. The best-known assertion of this notion is the essay ‘Hackers and Painters’ by programmer and venture capitalist Paul Graham. ‘What hackers and painters have in common is that they’re both makers. Along with composers, architects and writers, what hackers and painters are trying to do is make good things.’

According to Graham, the iterative processes of programming—write, debug (discover and remove bugs, which are coding errors, mistakes), rewrite, experiment, debug, rewrite—exactly duplicate the methods of artists: ‘The way to create something beautiful is often to make subtle tweaks to something that already exists, or to combine existing ideas in a slightly new way ... You should figure out programs as you’re writing them, just as writers and painters and architects do.’ Attention to detail further marks good hackers with artist-like passion:

All those unseen details [in a Leonardo da Vinci painting] combine to produce something that’s just stunning, like a thousand barely audible voices all singing in tune. Great software, likewise, requires a fanatical devotion to beauty. If you look inside good software, you find that parts no one is ever supposed to see are beautiful too.

This desire to equate art and programming has a lengthy pedigree. In 1972, the famed computer scientist Butler Lampson published an editorial titled ‘Programmers as Authors’ which began:

Creative endeavor varies greatly in the amount of overhead (i.e. money, manpower and organization) associated with a project which calls for a given amount of creative work. At one extreme is the activity of an aircraft designer, at the other that of a poet. The art of programming currently falls much closer to the former than the latter. I believe, however, that this situation is likely to change considerably in the next decade.

Lampson’s argument was that hardware would become so cheap that ‘almost everyone who uses a pencil will use a computer,’ and that these users would be able to use ‘reliable software components’ to put together complex programs. ‘As a result, millions of people will write non-trivial programs, and hundreds of thousands will try to sell them.’

A poet, however, might wonder why Lampson would place poetry making on the same spectrum of complexity as aircraft design, how the two disciplines—besides being ‘creative’—are in any way similar.

After all, if Lampson’s intent is to point towards the future reduction of technological overhead and the democratization of programming, there are plenty of other technical and scientific fields in which the employment of pencil and paper by individuals might produce substantial results. Architecture, perhaps, or carpentry, or mathematics. One thinks of Einstein in the patent office at Bern. But even the title of Lampson’s essay hints at a desire for kinship with writers, an identification that aligns what programmers and authors do and makes them—somewhere, eventually—the same.

Both writers and programmers struggle with language. The code at the beginning of this chapter is in Microsoft’s C#, one of thousands of high-level programming languages invented over the last century. Each of these is a ‘formal language,’ a language ‘with explicit and precise rules for its syntax and semantics,’ as the Oxford Dictionary of Computing puts it. Formal languages ‘contrast with natural languages such as English whose rules, evolving as they do with use, fall short of being either a complete or a precise definition of the syntax, much less the semantics, of the language.’ So these formal dialects may be less flexible and less forgiving of ambiguity than natural languages, but coders—like poets—manipulate linguistic structures and tropes, search for expressivity and clarity: ‘While a piece of code may pass instructions to a computer, its real audience, its readers, are the programmers who will add features and remove bugs in the days and years after the code is first created. Donald Knuth is the author of the revered magnum opus on computer algorithms and data structure, The Art of Computer Programming. Volume 3 of the Art was published in 1973; the first part of Volume 4 appeared in 2011; the next part is “under preparation.” If ever there was a person who fluently spoke the native idiom of machines, it is Knuth, computing’s greatest living sage. More than anyone else, he understands the paradox that programmers write code for other humans, not for machines: “Let us change our traditional attitude to the construction of programs: instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to human beings what we want a computer to do.” In 1984, therefore, he famously formalized the notion of “literate programming.”

The practitioner of literate programming can be regarded as an essayist, whose main concern is with exposition and excellence of style. Such an author, with thesaurus in hand, chooses the names of variables carefully and explains what each variable means. He or she dares to write a program that is comprehensible because its concepts have been introduced in an order that is best for human understanding, using a mixture of formal and informal methods that reinforce each other.
Good code, then, is marked by qualities that go beyond the purely practical, like equations in physics and mathematics, code can aspire to elegance. Knuth remarked about the code of a compiler that it was ‘plodding and excruciating to read, because it just didn’t possess any wit whatsoever. It got the job done, but its use of the computer was very disappointing.’

To get the job done—a novice may imagine that this is what code is supposed to do. Code is, after all, a series of commands issued to a dumb hun of metal and silicon and plastic animated by electricity. What more could you want it to do, to be? Knuth answers: code must be ‘absolutely beautiful.’ He once said about a program called SOAP (Symbolic Optimal Assembly Program) that ‘reading it was like hearing a symphony, because every instruction was sort of doing two things and everything came together gracefully.’

We are now unmistakably in the realm of human perception, taste and pleasure, and therefore of aesthetics. Can code itself—as opposed to the programs that are constructed with code—be beautiful? Programmers certainly think so. Greg Wilson, the editor of Beautiful Code, an anthology of essays by programmers about ‘the most beautiful piece of code they knew,’ writes in his forward to that book:

I got my first job as a programmer in the summer of 1982. Two weeks after I started, one of the system administrators loaned me Kernighan and Plauger’s The Elements of Programming Style and Wirth’s Algorithms + Data Structures = Programs. [These books] were a revelation—for the first time, I saw that programs could be more than just instructions for computers. They could be as elegant as well-made kitchen cabinets, as graceful as a suspension bridge, or as eloquent as one of George Orwell’s essays.

Knuth himself is careful to limit the scope of his aesthetic claims: ‘I do think issues of style do come through and make certain programs a genuine pleasure to read. Probably not, however, to the extent that they would give me any transcendental emotions.’ But in the many discussions that programmers have about craftsmanship, elegance and beauty, there is an unmistakable tendency to assert—as Wilson does—that code is as ‘eloquent’ as literature.

The day that millions will dash off beautiful programs—as easily as with a pencil—still remains distant. The ‘lovely gems and brilliant coups’ of coding remain hidden and largely incomprehensible to outsiders. But the beauty that programmers pursue leads to their own happiness, and—not incidentally—to the robustness of the systems they create, so the aesthetics of code impact your life more than you know.

... Can code itself—as opposed to the programs that are constructed with code—be beautiful? Programmers certainly think so....
The spring issue was an amazing mix of the old and the new—descriptions of some incredible people keeping the values we cherished in more bygone days when I attended Pomona and later practiced pediatrics in Claremont; and the far-out stereoscopic pictures of beautiful California.

It was uplifting for me to hear of Dr. Joan Guenther as he pursued his desire to truly serve his community. I was also pleased to learn that the University of California system that won’t allow innovation and cuts off money for the physical sciences is also taking care of his/her patients.

Matt O’Connor’s young men of many talents, unashamedly speaks of his part in Christian Athletes, which shows he is aware of where his talents came from.

The addition of the stereoscopic pictures of naturally beautiful California provided some real nostalgia and balanced the “old” with the “new.”

Let me know if anyone remembers a kindly pediatrician who practiced in Claremont in the 50s, has two pediatrics in one book, with an emphasis on nutrition, that can be browsed on Amazon: Brooks, Ralph.

—Ralph K. Campbell, M.D. ’50
Poliston, Montana

Environmental Faux Pas

During my son’s remarkable time at Pomona, his mother and I have immersedly enjoyed the Pomona College Magazine. And this issue’s content comes from a magazine publisher (we own these in the field of recycling).

But the Spring 2014 issue was designed with a serious environmental error. The inclusion of 3D lenses was a major mistake on your part. Only two things can happen with these non-recyclable items. The reader might not put them on, and thus the lenses end up contaminating the paper recycling stream, or they end up in the trash. The result is the reader uses them, and then throws them away.

Shoot your decision down as a harmful paper recycling or added to the waste stream. I think a so-called technology vendor sent you a biiiiiiit too much money for the product.

Again, I compliment you on a wonderful product. Your product is remarkably comprehensible and well-written. But in the future, please assess the environmental consequences when you consider any publishing changes (paper, ink, etc.). As one publisher to another, I’d like to provide you advice to make sure your environmental decisions this as such do not occur again.

Go Sagehen!

—Jerry Powell
Portland, Oregon

Time for Divestment

The time has come for Pomona College to divest its endowment from the fossil fuel industry and redirect its investments into the energy sources of the future. I don’t believe I need to go into detail about why fossil fuels are problematic. The world’s scientists have long since identified human use of fossil fuels as the primary driver of climate change.

I am certainly not the first to suggest the Col- legiate move such a move. For 18 months Pomona students have been asking for change, yet last September President Oxtoby and Co Board of Trustees rejected divestment, claiming it would cost the school $485 million in lost earnings and cited the many environmental initiatives occurring on campus.

I am proud of the work Pomona College has done to achieve a gold rating from the Sustain- ability Tracking, Assessing, and Rating System (STARS), its EED-certified green buildings, and their calculations and academic program.

But that is not enough. I live in Montana, a place with a lot of beautiful backcountry lakes and rivers. But it also has coal strip mines, and its pristine nature is constantly assailed by wind turbines, power extraction, fossil fuel development has extensive impacts on water supply, greenhouse gases, and air sheds. Aquifers are polluted, residents get sick from the froggy methane, and spills regularly occur, killing fish and wildlife.

People protest, and the fossil-fuel industry uses heavy-handed tactics to buy off officials and silence dissent. This is happening here in my home, Montana.

I do what I can as an architect, homeowner and bicyclist commuter to implement a fossil-free fuel future, but I know that my action alone is not enough. And far too much is at stake. So I work long hours through small citizen’s group to hold industry and governing powers accountable. This is the way we made the Pomona College, as an ally in this work rather than as an opponent. And I am only asking you to uphold its stated core values, as I have challenged myself to do.

I call upon President Oxtoby and the Board of Trustees to be committed and creative about working toward a divestment solution as through the years I’ve pondered on it. In the big pic- ture, my life, my home and everyone’s lives do.

—Ed Furlong
Billings, Montana

Error Card

According to Wikipedia, an “error card” is “a type of insurance which covers unforeseen or some other unintended flaw.”

Also, your Summer 2013 issue’s “Pomona All-Stars” baseball card of Mike Salt ’90, which shows him standing in front of a large billboard proclaiming Boise sports radio station WEI! 103.3 FM, has been rendered an “error card” just a half-year after the magazine’s pub- lication.
Although it was the perfect job for Salk, a known—and deeply knowledgeable—sports fanatic since his undergraduate days, it also was an impossible situation; ever since the advent of a rival sports radio station, 98.5 The Sports Hub, WEEI has been incessantly bleeding listeners, ratings and advertisers in the metro Boston market.

An upper-management shakeup, new hires (such as Salk), and other innovations have so far proven unable to rescue WEEI’s “brand,” so 98.5 is now perceived as the younger, hipper alternative to the “dinosaur” that is WEEI. Not even a cross between the two Howards—Cosell and Stern—could revive WEEI’s fortunes.

With his dedication, intelligence, and likability, it is no surprise that Salk has already landed on his feet with a new announcing job at Seattle’s ESPN 710.

Perhaps CMP can quietly airbrush out, Sviyatov, the “WEEI 102.3” from the online version of Salk’s “Pomona All-Stars” card, and replace it with “ESPN 710”.

Teasing with affection—
—Doug Meyer ’01
Waltham, Massachusetts

Drumbeats

James Schlesinger, the rare public servant who served in the Cabinet of both Republican and Democrat presidents, died last week. He was Secretary of Defense for Presidents Nixon and Ford, and later Secretary of Energy for President Carter. He also headed the CIA when its credibility was threatened at the height of President Nixon’s Watergate scandal. Schlesinger was brilliant and blunt, two qualities that don’t always show up together and don’t always work well together in Washington. I met Jim in the 1990’s when we were seated together at a lunchroom. As people do in Washington, we looked for common ground. When I told him I was a graduate of Pomona, he immediately started singing, “Drumbeats, drumbeats, drumbeats rolled over the silence profound, high above Pomona, in the sea tama.” A Harvard man, Jim was in a college singing group when he heard the Pomona men sing “Torchbearers” nearly 50 years earlier. He called it the best college song he had ever heard, bar none. Neither of us knew that “Torchbearers” would become the painful subject of campus debate a few years later. Some were offended by the made-up student and the historically inaccurate imagery of Native Americans in the Pomona Valley. Those who loved the song and paid (at least) no attention to the words thought the controversy was political correctness gone berserk. After a lengthy study, a special committee recommended (if my memory serves) that in the future the song should only be sung at alumni gatherings and only if the offensive words were changed. Sounds like a Worthington, D.C., solution (unless it deals with the Redskins). I wonder what ever became of “Torchbearers,” like Jim Schlesinger, I’ve never been able to get those wonderful, haunting sounds out of my head. If today’s students don’t get to hear it, it’s a shame.

Saddened

I was deeply saddened to learn that my classmate, Emory Zimmernann had passed away. I sang first soprano in the Women’s Glee Club, and Emory sang bass in the Men’s Glee Club. I earned Emory’s annnounce one year by lining up not one but two speakers for the Annual Glee Club Banquet—my great uncle, Howard Ross (’44), an early member of the Men’s Glee Club, and my grandmother, Katherine Bird Twining (’04) who knew the origins of “Torchbearers.” She knew Prof. Brassard and David Barrows who copied the music from the local Indians and turned it into Pomona’s “Torchbearers.”

“Torchbearers” requires low basses. Fortunately, Emory had a deep bass voice. One could always hear Emory singing the bass part. Though we gripe that his voice is now stilled, in my mind’s eye, I can always recall the resounding sound of “Torchbearers” and Emory singing the low bass part.

He will be missed by us all.

I was also saddened to learn that my academic advisor, Edwin A. Phillips, emeritus professor of botany, had passed away. I rarely agreed with him, but I was part of the NSF grant studying hybridization of Quercus dou-

I left biology for physics in 1970, but the legacy, but he wasn’t included in the picture. The misidentified student, as it turns out, is the female legacy with the same first name, Matt Eva, 17. The mistake happened as staff members were checking off students from a list as they arrived for the photo. We apologized to both families for the mistake.

Strange Thoughts (decoded)

Here is the plain text of the three enciphered paragraphs in the Strange Thoughts column on page 6:

[Caesar Cipher]

Caesar ciphers are child’s play to decode, but they are also the basis of complex codes like the Vigenère cipher, in which a word provides the key for multiple Caesar ciphers in a rotating sequence. The next paragraph, for example, uses “ABC” as its key. Thus, the first letter is a letter off, the second two, the third three, etc. It is a shame, if today’s students don’t get to hear it, it’s a shame.

[Vigenère Cipher]

The Vigenère cipher, in which a word provides the key for multiple Caesar ciphers in a rotating sequence. The next paragraph, for example, uses “ABC” as its key. Thus, the first letter is a letter off, the second two, the third three, etc. It is a shame, if today’s students don’t get to hear it, it’s a shame.

[One-Time Pad Cipher]

If you’ve come this far, you must be as intrigued by codes as I am. So congratulations.

Misidentified Legacy

In the photo of Pomona legacies—children, grandchildren, and great-grandchildren of Pomona alumni—on page 51 of the Spring 2014 issue of PCM, we erroneously identified one of the students pictured as Matt Dahl ’17. As Matt’s mother patiently informed us, Matt is indeed a legacy, but he wasn’t included in the picture. The misidentified student, as it turns out, is the female legacy with the same first name, Matt Eva ’17. The mistake happened as staff members were checking off students from a list as they arrived for the photo. We apologized to both families for the mistake.
Wiki-ed Idea

Enter a term in your search engine of choice and the first hit will probably be a Wikipedia entry. Enter a classroom, and you’ll probably hear that “Wikipedia is not a source,” says Pomona College Professor of Politics Amanda Hollis-Brusky. But she thinks those assumptions about the Internet encyclopedia need to be challenged.

In Hollis-Brusky’s Intro to American Politics course, the students work in groups either to create a new Wikipedia entry or to expand a current “stub” with sources and literature. The goal is to “improve the breadth, scope and quality of Wikipedia content; enhance student information literacy; and increase the number and diversity of contributions to the free-knowledge movement.”

Since this may be the only politics course these students take, Hollis-Brusky says it’s crucial to teach them information literacy. “They learn to distinguish a good Wikipedia article from a bad one, and as registered Wikipedia contributors, they have the skill set now to play an active role in improving it.”

One entry that students wrote in class—“guest worker program”—has been viewed 40,000 times. “Which is far more than my research gets viewed,” says Hollis-Brusky. “It’s a public contribution to play an active role in improving it.”

Hollis-Brusky says it’s crucial to teach them information literacy. and as registered Wikipedia contributors, they have the skill set now to play an active role in improving it.”

One entry that students wrote in class—“guest worker program”—has been viewed 40,000 times. “Which is far more than my research gets viewed,” says Hollis-Brusky. “It’s a public contribution to play an active role in improving it.”

Campus by Compass

Camping and good-natured competition came together on campus last spring as Pomona College’s Outdoor Education Center put on the Amazing Backcountry Race. Teams of students competed to complete more than a dozen “backcountry” tests, from building a fire to using a compass to pitching a tent blindfolded, and much more.

“We came up with this idea because we wanted students to learn/practice their outdoor skills in a fun way,” says Lisa Hirata, Pitzer College ’16. Winning teams took home prizes such as daypacks and water bottles.

DIY Physics

Tapping into the booming do-it-yourself movement, students in Professor Dwight Whittaker’s electronics class expect their final projects to live on long after semester’s end. Students posted their work to Instructables, a popular DIY website with step-by-step instructions for thousands of projects, as well as comments, ratings and suggestions from users. This year’s projects included a jacket that uses acceleration receptors to produce musical sounds that respond to movement, a self-stabilizing system for cameras and a quadricopter. Last year, students posted 25 lab projects to Instructables, supplying directions for a skateboard speedometer, sleep-cycle alarm clock and other devices. “It’s been great for the students to see their projects reach a global audience,” says Amanda Ghasi ’11, who joined the Instructables team after graduating from Pomona. “One of the most fun things about publishing open-source projects online is to see what other people do with your code and schematics.”

Water Wisdom

Pomona College finished among the top five in the Campus Conservation Nationals 2014 water conservation competition, with students living in residence halls reducing their water use by 65,904 gallons. Leading the way in reducing water consumption during the Pomona WaterWise competition were:

1. Lyon Court -15.4%
2. Mudd-Blaisdell & Gibson Hall -15%
3. Norton Hall -13.7%

Trial Run

Competing against the top 24 teams from West Coast regional tournaments, the Pomona College Mock Trial Team took top honors in the Opening Round Championship Series last spring in Newport Beach, Calif., beating out such teams as UCLA, USC and the U.S. Air Force Academy in a case revolving around a robbery and murder at an amusement park. The win earned the Pomona team a trip to the National Mock Trials Championship Tournament in Orlando, Fla., where UCLA topped Princeton in the finals. Earlier in the academic year, the Sagehen team, which only formed seven years ago, placed third at the UCLASSIC invitational at UC-Irvine, first at a tournament held at Stanford University and first at the regional competition hosted by Claremont McKenna College.

At the southwest corner of the Smith Campus Center, a new bright green fixture stands next to the bike racks. This pole, which enables bikes to be hung at convenient height, is part of Pomona’s newly installed do-it-yourself bicycle repair station, which also includes attached toolkits like a hex-key set, wrenches, tire levers, screwdriver and tire pump. Environmental analyst major Johanna Ray!’16, who came up with the idea, notes that her “decision to take this project on was partly influenced by the fact that I had a flat tire at the moment I heard the idea and was frustrated that I didn’t have the resources to fix it myself.”

At the southwest corner of the Smith Campus Center, a new bright green fixture stands next to the bike racks. This pole, which enables bikes to be hung at convenient height, is part of Pomona’s newly installed do-it-yourself bicycle repair station, which also includes attached toolkits like a hex-key set, wrenches, tire levers, screwdriver and tire pump. Environmental analyst major Johanna Ray!’16, who came up with the idea, notes that her “decision to take this project on was partly influenced by the fact that I had a flat tire at the moment I heard the idea and was frustrated that I didn’t have the resources to fix it myself.”

Water Wisdom

Pomona College finished among the top five in the Campus Conservation Nationals 2014 water conservation competition, with students living in residence halls reducing their water use by 65,904 gallons. Leading the way in reducing water consumption during the Pomona WaterWise competition were:

1. Lyon Court -15.4%
2. Mudd-Blaisdell & Gibson Hall -15%
3. Norton Hall -13.7%

Trial Run

Competing against the top 24 teams from West Coast regional tournaments, the Pomona College Mock Trial Team took top honors in the Opening Round Championship Series last spring in Newport Beach, Calif., beating out such teams as UCLA, USC and the U.S. Air Force Academy in a case revolving around a robbery and murder at an amusement park. The win earned the Pomona team a trip to the National Mock Trials Championship Tournament in Orlando, Fla., where UCLA topped Princeton in the finals. Earlier in the academic year, the Sagehen team, which only formed seven years ago, placed third at the UCLASSIC invitational at UC-Irvine, first at a tournament held at Stanford University and first at the regional competition hosted by Claremont McKenna College.

At the southwest corner of the Smith Campus Center, a new bright green fixture stands next to the bike racks. This pole, which enables bikes to be hung at convenient height, is part of Pomona’s newly installed do-it-yourself bicycle repair station, which also includes attached toolkits like a hex-key set, wrenches, tire levers, screwdriver and tire pump. Environmental analyst major Johanna Ray!’16, who came up with the idea, notes that her “decision to take this project on was partly influenced by the fact that I had a flat tire at the moment I heard the idea and was frustrated that I didn’t have the resources to fix it myself.”

At the southwest corner of the Smith Campus Center, a new bright green fixture stands next to the bike racks. This pole, which enables bikes to be hung at convenient height, is part of Pomona’s newly installed do-it-yourself bicycle repair station, which also includes attached toolkits like a hex-key set, wrenches, tire levers, screwdriver and tire pump. Environmental analyst major Johanna Ray!’16, who came up with the idea, notes that her “decision to take this project on was partly influenced by the fact that I had a flat tire at the moment I heard the idea and was frustrated that I didn’t have the resources to fix it myself.”
One day my mom caught me on the computer and I wrote my first story on a slideshow presentation. One day my mom caught me on the computer and instead of scolding me for disobeying her, she read my story. From that day on, I never really stopped writing.

By the time she was 10, Coyuto was a published author, writing children’s books in her native Philippines. As she grew older, she was inspired to write a book of short stories at age 16, titled “Flight to the Stars.”

Even in those early years, Coyuto knew she had found a life-long passion. Being behind a keyboard allowed her to open up in ways that were perhaps more difficult in real life.

“I’ve always been a person who never really thought I was good enough or beautiful enough or a writer enough, but I was also a venue where I can express myself. I can write the most bizarre things, and some might call it creative writing. The thing I love about writing is that it doesn’t matter how old you are or where you’re from, there is someone out there who will pay attention to what you have to say.”

Coyuto wasn’t content with merely finding her own inspiration and seeing it through. She wanted others to have the same opportunity, so she started an organization to help build libraries in the Philippines for Humanitarian communities in the Philippines. “The idea of our ‘Gintong Ilog’ (Golden Minds) library stemmed from both my experiences with writing and tennis. My biggest role models were some of the kids I met in junior tennis. They all had big dreams of playing for the Davis Cup, ranking internationally or getting college scholarships. I’m very happy to say that some of those kids toured abroad and got full-ride scholarships to the top universities in the Philippines. The idea of our ‘Gintong Ilog’ (Golden Minds) library stemmed from both my experiences with writing and tennis.”

Author/social entrepreneur Mae Coyuto ‘16 understands success, both on and off the court.

As a child, Mae Coyuto had dreamed of being a writer and a tennis player. She described her early life as one of ups and downs.

“Sometimes it was thousands of miles away when Typhoon Haiyan (Typhoon Yolanda, as it is known in the Philippines) devastated her home country, and although her family and local community were spared the brunt of the storm, she knew plenty of people directly affected.

“The hardest part about being away during Typhoon Yolanda was hearing about the casualties, seeing the destruction and feeling that I couldn’t do anything to help. Thankfully, my amazing AAMP mentor, Kim Africa ’15, planned a fundraising dinner for the victims. This Medical Student Association event made me realize how lucky I also was to be part of the SC community and the tennis team. I was so touched when my professors, even from my freshman year, all wrote me an e-mail checking up on me and asked if there was any way they could help.

“Even with all their work and other responsibilities, my teammates spent hours helping me make Filipino desserts for the event. I also reached out to the CMS women’s tennis team, asking if they could donate a basket for the raffle and they made the most beautiful basket I’ve ever seen. Seeing all my friends and teammates at the dinner made me realize that I’ve found my second home in this community.”

Coyuto played most of her freshman season at No. 2 singles and led the team to the No. 16 ranking with a 17-6 record. As a sophomore this spring, she led the team in wins again (17-8) and moved up to the No. 1 doubles position. As the team’s top singles player, helping Pomona-Pitzer to a No. 6 national ranking and an appearance at the NCAA Regional finals, she was known as a strong team player. In her senior year, Coyuto was an All-SCIAA first-team selection and playing number one singles. She led the team to a victory over the University of La Verne and was named to the All-SCIAA First Team.

“Until now, I have never felt this kind of support and love to the greater community is one area where Coyuto has always managed to hit a winner.”

Making History

The spring season saw the Pomona-Pitzer tennis teams receive accolades in the brief histories of their programs. Women’s lacrosse, which had its first year of varsity competition in 2008, earned its first NCAA Division II Tournament bid by getting a new school record for wins in a season (16-2) and earning the top seed in the SCIAC Tournament. Women’s tennis, which had its first varsity season in 2011, had its first individual qualifier to the NCAA Championships, on Jennifer Kim’s 13 vote to compete at nationals. Kim finished as the runner-up overall in 11 of 10 competitors at the four-day tournament in Howey-in-the-Hills, Florida.

Three-peat

The women’s water polo team won its third consecutive SCIAC title by defeating Claremont-Mudd-Scripps 7-4 in the championship match at the SCIAC Championships. With the win, the team continued an impressive run of success and will likely be back for a fourth straight SCIAC title next season.

Top Tennis

Both the women’s tennis and men’s tennis programs achieved top-10 rankings nationally during the spring and advanced to the NCAA Regional finals. Women’s tennis, No. 6 in the nation, featured a top-two doubles team of Samantha Chen ’14 and lyn Ten ’16, who reached the semifinals of the NCAA doubles championships. Men’s tennis, meanwhile, climbed up to No. 10 and defeated Texas-Tyler in the NCAA Regional finals, also featuring an All-American doubles team of Chris Whischat ’14 and Antony Balls ’17.

Need A Bigger Mantelpiece

Simon Rosenberg ’16 earned a long list of post-season accolades after a remarkable season with the Pomona-Pitzer baseball team. He was named first team All-America by both the National Association of Baseball Coaches (NABCO) and D3baseball.com, earned the SCIAC Player of the Year Award and the D3baseball.com West Region Player of the Year Award and was an Academic All-District selection by the College Sports Informa- tion Network (C-SIN). Rosenberg was named to the post season All-District first team with a fitting stat line for a Pomona student, recording a .474 batting average (second in the nation) with 47 runs batted in.

The women’s water polo team won its third consecutive SCIAC title by defeating Claremont-Mudd-Scripps 7-4 in the championship match at the SCIAC Championships. With the win, the team continued an impressive run of success and will likely be back for a fourth straight SCIAC title next season.

Top Tennis

Both the women’s tennis and men’s tennis programs achieved top-10 rankings nationally during the spring and advanced to the NCAA Regional finals. Women’s tennis, No. 6 in the nation, featured a top-two doubles team of Samantha Chen ’14 and lyn Ten ’16, who reached the semifinals of the NCAA doubles championships. Men’s tennis, meanwhile, climbed up to No. 10 and defeated Texas-Tyler in the NCAA Regional finals, also featuring an All-American doubles team of Chris Whischat ’14 and Antony Balls ’17.

Need A Bigger Mantelpiece

Simon Rosenberg ’16 earned a long list of post-season accolades after a remarkable season with the Pomona-Pitzer baseball team. He was named first team All-America by both the National Association of Baseball Coaches (NABCO) and D3baseball.com, earned the SCIAC Player of the Year Award and the D3baseball.com West Region Player of the Year Award and was an Academic All-District selection by the College Sports Informa- tion Network (C-SIN). Rosenberg was named to the post season All-District first team with a fitting stat line for a Pomona student, recording a .474 batting average (second in the nation) with 47 runs batted in.
Ceremonial Selfie

Graduating senior and neuroscience major Olufela Adeleke Koleoso ’14 snaps a light-hearted selfie with President David Ottowy while receiving his diploma during Commencement 2014.
Photo by Carlos Puma

On Board: Jack Long

Jack Long, chairman and co-founder of SchoolAdmin, LLC, and father of a Pomona graduate and a current student, has been named to the Pomona College Board of Trustees.
Long’s SchoolAdmin produces web-based administrative systems for K-12 independent and charter schools—more than 130 in all. Long is past chairman and co-founder of PeopleAdmin, Inc., and Lone Star Overnight, L.P., both recognized in Inc. magazine’s Inc. 500 list of fastest-growing privately-held businesses. In 1994, he was named an Entrepreneur of the Year by Ernst & Young. In 2003, Long became part of the founding faculty of the Acton School of Business, where he currently teaches.
Prior to that, he was an adjunct professor at the University of Texas at Austin McCombs School of Business MBA program. Long serves on the board of directors of Blue Avocado Company and Greenling, Inc. His nonprofit work includes serving on the boards of the Texas chapter of The Nature Conservancy, the Pilatus Owners and Pilots Association and the Board of Visitors of Vanderbilt University’s Owen School of Business. He is a past trustee and finance chair of St. Stephen’s Episcopal School. Long and his wife, Carolyn, have chaired the Pomona College Parent’s Council for the last three years. Currently pursuing a bachelor of science in astronomy at the University of Texas at Austin, Long earned his undergraduate degree in business administration from the University of Richmond and an MBA from Vanderbilt University. Long and his wife make their home in Austin, Texas. He is the father of Adam Jackson Long ’13 and Carlen Elizabeth Long ’15.
Art in his DNA

OF THE POMONA COLLEGE MUSEUM OF ART, AS ASSOCIATE DIRECTOR AND REGISTRAR

STEVE COMBA WORKS TO CONSERVE ARTWORKS WHILE PROMOTING HANDS-ON OUTREACH.

Before he was cataloguing the nearly 10,000 pieces in the Pomona College Museum of Art (PCMA) collection, museum Associate Director and Registrar Steve Comba was earning a reputation among his fifth-grade classmates for copying Peanuts cartoons and drawing "Wanted" posters of his least favorite teachers—a feat which often got him into trouble. Comba still has a sharp, sly sense of humor, but when it comes to managing the College's art collection, he's all business.

Comba never set out to work for a museum. As an undergraduate, he attended the UC Santa Barbara College of Creative Studies, later relocating to Claremont, where he received his MFA in Studio Art from the Claremont Graduate University in 1995. All he wanted was a teaching job that would enable him to pay the rent for his tiny studio. Until he could find a position, he took a part-time job photographing, mapping and framing prints at the Galleries of The Claremont Colleges, the former museum jointly run by Pomona and Scripps colleges. When two positions at the gallery opened up, Comba inquired about being gallery manager. "I thought it would be more appropriate for a studio artist to be the person who hangs the work, but the curator of collections thought I should look at the position of registrar instead," he recalls. "My response was, "Okay… what is that'?"

As it turns out, it's a lot. Comba's official job description is to track everything about every object in the museum, whether it belongs to the PCMA collection or is on loan from another institution. If someone needs to know where an object is and how it's doing, Comba is the person to call. He also oversees conservation efforts of pieces that have seen better days. "I get a lot of personal gratification when I've done something for an object that I know will further its preservation," he says.

As associate director and registrar, Comba says that talk of a new, larger museum is in the works. With a collection that grows by 100 to 170 objects a year, adding more space only makes sense. "A museum isn't just about the contents," he explains. "It's a place. The place either enhances or detracts from the experience of the visitor. What's exciting about the future is that our desire to expand is not just about making the museum bigger. It's about having that relationship be fundamentally better."

As for the future of PCMA, Comba says that talk of a new, larger museum is in the works. With a collection that grows by 100 to 170 objects a year, adding more space only makes sense. "A museum isn't just about the contents," he explains. "It's a place. The place either enhances or detracts from the experience of the visitor. What's exciting about the future is that our desire to expand is not just about making the museum bigger. It's about having that relationship be fundamentally better."

"It's a place. The place either enhances or detracts from the experience of the visitor. What's exciting about the future is that our desire to expand is not just about making the museum bigger. It's about having that relationship be fundamentally better.

Fall Highlights

A sampling of coming events

Here are a few selected highlights from the list of events scheduled for this fall at Pomona:

EVENT:
Opening of Pomona’s New Art Hall
11:30 a.m., Saturday, Oct. 11
Opening festivities will begin at 11:30 a.m. and continue through the evening with tours, performances, installa- tions and refreshments. Watters will hear from architects Kulapat Yantrasast, based in a mirrored Steam Egg, cloaks to the supersonic sounds of Thunderbirds and eat from a secret food elevator.

MUSIC:
Global Guitars: the Los Angeles Guitar Quartet
8 p.m., Friday, Sept. 19, Bridges Hall of Music
“"The world’s hottest classical ensemble or its tightest pop band?" asks the Los Angeles Times. "However, it helps you to think about the UAGQ, keep the emphasis on so- phisticated for its posh pared down, robotic sound and speak- ing spirits." Music by Beale, Coltrane, Copland, Krouse, Sousa, York and others. (Contact: 909-607-4373; concert@pomona.edu; www.music.pomona.edu)

THEATRE:
"Spring Awakening"
8 p.m., Nov. 20-23; 2 p.m., Nov. 22, Seaver Theatre
The musical, Spring Awakening, was inspired by one of dance’s most controversial masterpieces, so daring in its depiction of teenage self-discovery that it was banned. Adapted by Steven Sater, with music by Den- nison Sheik, General admission: $10; students, faculty, staff & seniors: $5. (Contact: 909-607-4373; www.theatre.pomona.edu/contact/ticket-information)

EXHIBITION:
"Petrochemical America"
September 2 - December 19, 2014
Opening Reception: Saturday, September 6, 5–7 p.m., Seaver Art Gallery
A collaboration between photographer Richard Misrach and landscape architect Kate Orff focuses on the industri- alized landscape of the Mississippi River Corridor. (Contact: 909-607-3358 or misrachinfo@pomona.edu; www.pomona.edu/museum)
Lunch was supposed to be casual.

Mikey Dickerson ’01 was in Chicago catching up with Dan Wagner, a friend who’d been in the trenches with him on Barack Obama’s campaign for the presidency in 2012. Wagner had since gone on to found a company, Civis Analytics; Dickerson was a site reliability engineer at Google, one of the people who make sure that the search engine never, ever breaks down. ¶ This was October of 2013, no time for the President’s geesiets loyalists to have a little fun. Healthcare.gov, the sign-up website that was the signature element of President Obama’s signature initiative, was a technological disaster. People couldn’t sign up even if they wanted to—the site would break, or fail. Delays were interminable. Information got lost. Customer service was about as good as you’d expect from a cable TV company. The Department of Health and Human Services, responsible for the new health care system, couldn’t seem to get it working.

¶ “So, we got this phone call yesterday,” Wagner told Dickerson. “HHS is looking for help with healthcare.gov. Can I list you as an advisor or consultant?” ¶ “Yeah, sure. If it’s any value to you, list me,” Dickerson replied. It seemed innocuous enough. Today, he smiles at his own naiveté. “I had no idea what I was getting into,”

By Adam Rogers ’92
“We can barely find a case where, when two decisions could be made, they made the right one. But low-hanging fruit isn’t the right metaphor. We’re stepping on the fruit.” — Mikey Dickerson ’01

FALL 2014 21
we’re doing now, for an indefinite period of time, until it gets better.”

After a couple of days, Park asked them whether it could be fixed. “Todd, they have made all the mistakes that can be made,” Dickerson told him. “We can barely find a case where, when two decisions could be made, they made the right one. But low-hanging fruit isn’t the right metaphor. We’re stepping on the fruit.” The point was, some very simple fixes would yield some very big gains. Any improvement would be a massive improve-

In other words, Dickerson had built into the system something no one had thought of: accountability. “What Mikey really excelled at was, if there’s a priority issue that needs to be addressed, how can people address it? What do they know? What do they need to know? What’s blocking them?” says Smith. “That’s just his demeanor and the way he operates.” The meet-
ings were so productive and making so much of a difference in site performance that Dickerson instructed the rest of the government coders to do. And he got to hire whomever he wanted, without arguing the point. He wanted to be able to trust the new team members, so he chose them himself. Eventually a rotating team of Google site reliability engineers started coming through to keep the project on track. Dickerson got to dictate those terms because he had made all the critical decisions. He had become indispensable. “Mikey is an incredible talent who was seemingly built in a lab to help fix healthcare.gov,” Park says. “It’s not just the fact that he’s got a sky-high tech IQ, honed over years as a star site reliability engi-

We’re doing now, for an indefinite period of time, until it gets better.”

After a couple of days, Park asked them whether it could be fixed. “Todd, they have made all the mistakes that can be made,” Dickerson told him. “We can barely find a case where, when two decisions could be made, they made the right one. But low-hanging fruit isn’t the right metaphor. We’re stepping on the fruit.” The point was, some very simple fixes would yield some very big gains. Any improvement would be a massive improve-

In other words, Dickerson had built into the system something no one had thought of: accountability. “What Mikey really excelled at was, if there’s a priority issue that needs to be ad-
dressed, how can people address it? What do they know? What do they need to know? What’s blocking them?” says Smith. “That’s just his demeanor and the way he operates.” The meet-
ings were so productive and making so much of a difference in site performance that Dickerson instructed the rest of the government coders to do. And he got to hire whomever he wanted, without arguing the point. He wanted to be able to trust the new team members, so he chose them himself. Eventually a rotating team of Google site reliability engineers started coming through to keep the project on track. Dickerson got to dictate those terms because he had made all the critical decisions. He had become indispensable. “Mikey is an incredible talent who was seemingly built in a lab to help fix healthcare.gov,” Park says. “It’s not just the fact that he’s got a sky-high tech IQ, honed over years as a star site reliability engi-

We’re doing now, for an indefinite period of time, until it gets better.”

After a couple of days, Park asked them whether it could be fixed. “Todd, they have made all the mistakes that can be made,” Dickerson told him. “We can barely find a case where, when two decisions could be made, they made the right one. But low-hanging fruit isn’t the right metaphor. We’re stepping on the fruit.” The point was, some very simple fixes would yield some very big gains. Any improvement would be a massive improve-

In other words, Dickerson had built into the system something no one had thought of: accountability. “What Mikey really excelled at was, if there’s a priority issue that needs to be ad-
dressed, how can people address it? What do they know? What do they need to know? What’s blocking them?” says Smith. “That’s just his demeanor and the way he operates.” The meet-
ings were so productive and making so much of a difference in site performance that Dickerson instructed the rest of the government coders to do. And he got to hire whomever he wanted, without arguing the point. He wanted to be able to trust the new team members, so he chose them himself. Eventually a rotating team of Google site reliability engineers started coming through to keep the project on track. Dickerson got to dictate those terms because he had made all the critical decisions. He had become indispensable. “Mikey is an incredible talent who was seemingly built in a lab to help fix healthcare.gov,” Park says. “It’s not just the fact that he’s got a sky-high tech IQ, honed over years as a star site reliability engi-

We’re doing now, for an indefinite period of time, until it gets better.”

After a couple of days, Park asked them whether it could be fixed. “Todd, they have made all the mistakes that can be made,” Dickerson told him. “We can barely find a case where, when two decisions could be made, they made the right one. But low-hanging fruit isn’t the right metaphor. We’re stepping on the fruit.” The point was, some very simple fixes would yield some very big gains. Any improvement would be a massive improve-

In other words, Dickerson had built into the system something no one had thought of: accountability. “What Mikey really excelled at was, if there’s a priority issue that needs to be ad-
dressed, how can people address it? What do they know? What do they need to know? What’s blocking them?” says Smith. “That’s just his demeanor and the way he operates.” The meet-
ings were so productive and making so much of a difference in site performance that Dickerson instructed the rest of the government coders to do. And he got to hire whomever he wanted, without arguing the point. He wanted to be able to trust the new team members, so he chose them himself. Eventually a rotating team of Google site reliability engineers started coming through to keep the project on track. Dickerson got to dictate those terms because he had made all the critical decisions. He had become indispensable. “Mikey is an incredible talent who was seemingly built in a lab to help fix healthcare.gov,” Park says. “It’s not just the fact that he’s got a sky-high tech IQ, honed over years as a star site reliability engi-

We’re doing now, for an indefinite period of time, until it gets better.”

After a couple of days, Park asked them whether it could be fixed. “Todd, they have made all the mistakes that can be made,” Dickerson told him. “We can barely find a case where, when two decisions could be made, they made the right one. But low-hanging fruit isn’t the right metaphor. We’re stepping on the fruit.” The point was, some very simple fixes would yield some very big gains. Any improvement would be a massive improve-

In other words, Dickerson had built into the system something no one had thought of: accountability. “What Mikey really excelled at was, if there’s a priority issue that needs to be ad-
dressed, how can people address it? What do they know? What do they need to know? What’s blocking them?” says Smith. “That’s just his demeanor and the way he operates.” The meet-
ings were so productive and making so much of a difference in site performance that Dickerson instructed the rest of the government coders to do. And he got to hire whomever he wanted, without arguing the point. He wanted to be able to trust the new team members, so he chose them himself. Eventually a rotating team of Google site reliability engineers started coming through to keep the project on track. Dickerson got to dictate those terms because he had made all the critical decisions. He had become indispensable. “Mikey is an incredible talent who was seemingly built in a lab to help fix healthcare.gov,” Park says. “It’s not just the fact that he’s got a sky-high tech IQ, honed over years as a star site reliability engi-

We’re doing now, for an indefinite period of time, until it gets better.”

After a couple of days, Park asked them whether it could be fixed. “Todd, they have made all the mistakes that can be made,” Dickerson told him. “We can barely find a case where, when two decisions could be made, they made the right one. But low-hanging fruit isn’t the right metaphor. We’re stepping on the fruit.” The point was, some very simple fixes would yield some very big gains. Any improvement would be a massive improve-

In other words, Dickerson had built into the system something no one had thought of: accountability. “What Mikey really excelled at was, if there’s a priority issue that needs to be ad-
dressed, how can people address it? What do they know? What do they need to know? What’s blocking them?” says Smith. “That’s just his demeanor and the way he operates.” The meet-
ings were so productive and making so much of a difference in site performance that Dickerson instructed the rest of the government coders to do. And he got to hire whomever he wanted, without arguing the point. He wanted to be able to trust the new team members, so he chose them himself. Eventually a rotating team of Google site reliability engineers started coming through to keep the project on track. Dickerson got to dictate those terms because he had made all the critical decisions. He had become indispensable. “Mikey is an incredible talent who was seemingly built in a lab to help fix healthcare.gov,” Park says. “It’s not just the fact that he’s got a sky-high tech IQ, honed over years as a star site reliability engi-
Expert witnesses at contentious trials can expect to be challenged, even discredited. But when he took the stand last year in a complex biotech patent case, Pomona Biology Professor Lenny Seligman never anticipated that his groundbreaking work at Pomona would be relegated to the “ash heap of failure.”

That attack line echoed from start to finish during the high-stakes federal trial in Maryland between two rival companies in the cutting-edge field of genetic engineering. The dismissive salvo was fired in the opening statement by the attorney for Cellectis, a large French firm that filed suit for patent infringement against its smaller U.S. competitor, Precision Biosciences, which had hired Seligman for its defense.

Seligman was more than just an expert witness. His research at Pomona had become a cornerstone for the case. Both sides cited Seligman’s work as a basis for the science on which their businesses had been built. Ironically, the plaintiff then found itself in the awkward position of having to undermine the validity of his work. It did so by claiming he had not actually produced anything concrete in his college lab that would invalidate the firm’s far-reaching claims.

“If I don’t hold that against him,” said the counselor. “This is very complicated technology. It does not surprise me that he wasn’t able to do it. What does bother me is Precision attempting to rescue his (work) from the ash heap of failure.”

Seligman left court that day thinking, “Ouch! Did he really say that?” When cross-examined by the same lawyer, Paul Richter, Seligman found an opportunity to sneak in a mild retort, saying on the stand, “That was not very nice.” Considering the attack still in store, the lawyer might have mused, “If you thought that was bad, wait until you hear my summation.”

In those final arguments, though, Seligman’s side fired back with outrage and eloquence. Following a week of mind-numbing technical testimony, David Basset, an attorney for Precision, rebutted the now infamous line. The court reporter transcribed the original reference as “ashes of failure,” but Seligman and others clearly remember it as a heap, and that’s the phrase that stuck.

“To say Seligman’s work belonged in the “ash heap of failure” was “as incorrect as it is offensive,” said Basset. “To the contrary, Professor Seligman’s article represented a monumental success from a small lab at Pomona College where (he) does his research with undergraduate students, 18 to 22 year-olds. And it paved the way for companies like Cellectis and Precision to do their work. … The real difference is that Professor Seligman was teaching the world what he had done and hoping that others would follow his blueprint.”

In the end, Precision won the infringement case and Seligman’s work was vindicated. The attack strategy against the likeable professor’s little-lab-that-could appeared to have backfired.

“I think that statement bit them in the ass,” he said.

Because even the jury kind of cringed when the lawyer said it. I mean, that’s really aggressive. And then when they got to
A meganuclease (which attached to a segment of DNA) is an enzyme that can make precise cuts to DNA without causing collateral damage. Researchers have discovered how to create mutant forms of these proteins, able to cut DNA at targeted sites.

To explain how it works, Seligman likes to use the example of a combination bicycle lock. A meganuclease protein molecule binds to a segment of DNA at certain contact points (divided into Group A and Group B). By changing the “combination,” researchers can create mutant versions that connect at different locations along the segment.

New mutants can also be made using changes in Group C, though that part of the protein doesn’t actually touch the DNA.

By “unlocking” these contact points, meganucleases can cleave the DNA segment at a specific location without doing other damage. This makes them valuable in biotechnology, with lucrative applications in medicine, agriculture and other fields.

This is where Seligman comes in. As far back as 2002, he and his student team, working with a meganuclease called I-Cre (above), showed that making changes to amino acids in a single Group B contact point produced a version that cleaved DNA in a different location. Among other things, Precision argued that Seligman’s prior and publicly shared work oversimplified its technically worked patent.

Lawyers often rely on metaphors to help explain complex concepts to a jury. But sometimes, the strategies can backfire.

“It’s like picking up a rope by its tip,” said Colicchio attorney Paul Richard. “Your neighbor comes over and says, ‘I’m going to put a DVD player in your room and now it’s mine. You don’t own it anymore. Even though I’m taking everything else—the engine, the wheels, the body, the car seats, the baby seat. I’m taking all of that because I put a DVD player in your room and now I own it and you can’t have it.’ That’s what sort of Dr. Seligman is saying by: ‘Put amino acids up here and I want all of this. I want your invention. You can’t have it. It’s not yours anymore.’"

The defense had a ready retort.

“This is not unlike picking up a rope by its tip,” said Precision attorney David Basset. “This is making a change that alters the variant in ways that matter. It’s like taking Mr. Richard’s.minus and putting wings on it and making it fly. It’s a different thing. It has been allowed fundamentally. The flying minion carried the day. Verdict for the defense.”

By “unlocking” these contact points, meganucleases can cleave the DNA segment at a specific location without doing other damage. This makes them valuable in biotechnology, with lucrative applications in medicine, agriculture and other fields.

This is where Seligman comes in. As far back as 2002, he and his student team, working with a meganuclease called I-Cre, showed that making changes to amino acids in a single Group B contact point produced a version that cleaved DNA in a different location. Among other things, Precision argued that Seligman’s prior and publicly shared work oversimplified its technically worked patent.

Lawyers often rely on metaphors to help explain complex concepts to a jury. But sometimes, the strategies can backfire.

“It’s like picking up a rope by its tip,” said Colicchio attorney Paul Richard. “Your neighbor comes over and says, ‘I’m going to put a DVD player in your room and now it’s mine. You don’t own it anymore. Even though I’m taking everything else—the engine, the wheels, the body, the car seats, the baby seat. I’m taking all of that because I put a DVD player in your room and now I own it and you can’t have it.’ That’s what sort of Dr. Seligman is saying by: ‘Put amino acids up here and I want all of this. I want your invention. You can’t have it. It’s not yours anymore.’"

The defense had a ready retort.

“This is not unlike picking up a rope by its tip,” said Precision attorney David Basset. “This is making a change that alters the variant in ways that matter. It’s like taking Mr. Richard’s.minus and putting wings on it and making it fly. It’s a different thing. It has been allowed fundamentally. The flying minion carried the day. Verdict for the defense.”

By “unlocking” these contact points, meganucleases can cleave the DNA segment at a specific location without doing other damage. This makes them valuable in biotechnology, with lucrative applications in medicine, agriculture and other fields.

This is where Seligman comes in. As far back as 2002, he and his student team, working with a meganuclease called I-Cre (above), showed that making changes to amino acids in a single Group B contact point produced a version that cleaved DNA in a different location. Among other things, Precision argued that Seligman’s prior and publicly shared work oversimplified its technically worked patent.

Lawyers often rely on metaphors to help explain complex concepts to a jury. But sometimes, the strategies can backfire.

“It’s like picking up a rope by its tip,” said Colicchio attorney Paul Richard. “Your neighbor comes over and says, ‘I’m going to put a DVD player in your room and now it’s mine. You don’t own it anymore. Even though I’m taking everything else—the engine, the wheels, the body, the car seats, the baby seat. I’m taking all of that because I put a DVD player in your room and now I own it and you can’t have it.’ That’s what sort of Dr. Seligman is saying by: ‘Put amino acids up here and I want all of this. I want your invention. You can’t have it. It’s not yours anymore.’"

The defense had a ready retort.

“This is not unlike picking up a rope by its tip,” said Precision attorney David Basset. “This is making a change that alters the variant in ways that matter. It’s like taking Mr. Richard’s.minus and putting wings on it and making it fly. It’s a different thing. It has been allowed fundamentally. The flying minion carried the day. Verdict for the defense.”

By “unlocking” these contact points, meganucleases can cleave the DNA segment at a specific location without doing other damage. This makes them valuable in biotechnology, with lucrative applications in medicine, agriculture and other fields.

This is where Seligman comes in. As far back as 2002, he and his student team, working with a meganuclease called I-Cre (above), showed that making changes to amino acids in a single Group B contact point produced a version that cleaved DNA in a different location. Among other things, Precision argued that Seligman’s prior and publicly shared work oversimplified its technically worked patent.

Lawyers often rely on metaphors to help explain complex concepts to a jury. But sometimes, the strategies can backfire.

“It’s like picking up a rope by its tip,” said Colicchio attorney Paul Richard. “Your neighbor comes over and says, ‘I’m going to put a DVD player in your room and now it’s mine. You don’t own it anymore. Even though I’m taking everything else—the engine, the wheels, the body, the car seats, the baby seat. I’m taking all of that because I put a DVD player in your room and now I own it and you can’t have it.’ That’s what sort of Dr. Seligman is saying by: ‘Put amino acids up here and I want all of this. I want your invention. You can’t have it. It’s not yours anymore.’"

The defense had a ready retort.

“This is not unlike picking up a rope by its tip,” said Precision attorney David Basset. “This is making a change that alters the variant in ways that matter. It’s like taking Mr. Richard’s.minus and putting wings on it and making it fly. It’s a different thing. It has been allowed fundamentally. The flying minion carried the day. Verdict for the defense.”

By “unlocking” these contact points, meganucleases can cleave the DNA segment at a specific location without doing other damage. This makes them valuable in biotechnology, with lucrative applications in medicine, agriculture and other fields.

This is where Seligman comes in. As far back as 2002, he and his student team, working with a meganuclease called I-Cre (above), showed that making changes to amino acids in a single Group B contact point produced a version that cleaved DNA in a different location. Among other things, Precision argued that Seligman’s prior and publicly shared work oversimplified its technically worked patent.

Lawyers often rely on metaphors to help explain complex concepts to a jury. But sometimes, the strategies can backfire.

“It’s like picking up a rope by its tip,” said Colicchio attorney Paul Richard. “Your neighbor comes over and says, ‘I’m going to put a DVD player in your room and now it’s mine. You don’t own it anymore. Even though I’m taking everything else—the engine, the wheels, the body, the car seats, the baby seat. I’m taking all of that because I put a DVD player in your room and now I own it and you can’t have it.’ That’s what sort of Dr. Seligman is saying by: ‘Put amino acids up here and I want all of this. I want your invention. You can’t have it. It’s not yours anymore.’"

The defense had a ready retort.

“This is not unlike picking up a rope by its tip,” said Precision attorney David Basset. “This is making a change that alters the variant in ways that matter. It’s like taking Mr. Richard’s.minus and putting wings on it and making it fly. It’s a different thing. It has been allowed fundamentally. The flying minion carried the day. Verdict for the defense.”

By “unlocking” these contact points, meganucleases can cleave the DNA segment at a specific location without doing other damage. This makes them valuable in biotechnology, with lucrative applications in medicine, agriculture and other fields.

This is where Seligman comes in. As far back as 2002, he and his student team, working with a meganuclease called I-Cre (above), showed that making changes to amino acids in a single Group B contact point produced a version that cleaved DNA in a different location. Among other things, Precision argued that Seligman’s prior and publicly shared work oversimplified its technically worked patent.

Lawyers often rely on metaphors to help explain complex concepts to a jury. But sometimes, the strategies can backfire.

“It’s like picking up a rope by its tip,” said Colicchio attorney Paul Richard. “Your neighbor comes over and says, ‘I’m going to put a DVD player in your room and now it’s mine. You don’t own it anymore. Even though I’m taking everything else—the engine, the wheels, the body, the car seats, the baby seat. I’m taking all of that because I put a DVD player in your room and now I own it and you can’t have it.’ That’s what sort of Dr. Seligman is saying by: ‘Put amino acids up here and I want all of this. I want your invention. You can’t have it. It’s not yours anymore.’"

The defense had a ready retort.

“This is not unlike picking up a rope by its tip,” said Precision attorney David Basset. “This is making a change that alters the variant in ways that matter. It’s like taking Mr. Richard’s.minus and putting wings on it and making it fly. It’s a different thing. It has been allowed fundamentally. The flying minion carried the day. Verdict for the defense.”
that Cellicot’s strategy was to put Precision, the much smaller firm, out of business, bankrupted by legal fees. So Precision could win the battle and still lose the war. Call it the ashes of success. “Cynically, a lot of us (supporting the U.S. company) thought this was all about trying to bleed them.”

Money and Science

The experience was not all cutthroat and high anxiety, however. Seligman also recalls the excitement of being swept up into the high-flying world of international business and high-priced corporate lawyers. He describes it with the wide-eyed wonder of a kid who grew up in Claremont and still uses the nickname he was given in kindergarten, rather than his full name, Maurice Leonard Seligman.

To Lenny, it was a thrill just being in New York for the deposition and looking out onto that breathtaking Manhattan skyline. He often punctuates his story with youthful expressions, like “awesome” and “oh, my god!” He breathlessly describes the “war room” where a battalion of lawyers in a suite of offices prepared for testimony ("Oh, my god!") And he recalls how lawyers worked through the night preparing challenges even to illustrations planned for court the next day, putting pressure on a graphics guy to create instant substitutions. (“Oh, my god!”)

Seligman also recalls the excitement of being swept up into the high-flying world of international business and high-priced corporate lawyers. He describes it with the wide-eyed wonder of a kid who grew up in Claremont and still uses the nickname he was given in kindergarten, rather than his full name, Maurice Leonard Seligman.

To Lenny, it was a thrill just being in New York for the deposition and looking out onto that breathtaking Manhattan skyline. He often punctuates his story with youthful expressions, like “awesome” and “oh, my god!” He breathlessly describes the “war room” where a battalion of lawyers in a suite of offices prepared for testimony ("Oh, my god!") And he recalls how lawyers worked through the night preparing challenges even to illustrations planned for court the next day, putting pressure on a graphics guy to create instant substitutions. (“Oh, my god!”)

“And you mix that with all this adrenaline and dread of being deposed—it was really exciting,” he says.

When it came to how much the defense paid him, the response might also be, "Oh, my god!"] That perky attorney made a point of making him divulge the fee in court: $400 an hour. "It was more money than I had ever made in a short amount of time," he recalled in the interview. "It was a lot of money for me."

The amount of money these companies dumped on this lawyer certainly raised larger concerns about the corrupting influence of big money in science, but it’s got to be small enough that you’re not doing the same thing that the big labs are doing because we don’t have the same resources.”

Focus on Students

Today, Seligman speaks about his former students as if they were his kids. He makes a point of mentioning them in his Pow erPoint presentation, and even notes who got married and who just had a baby.

"We are so lucky to be a place that gets such great students," he says. "It’s our job to work with them, to get them excited about science and keep them excited about it. I have no doubt they’re going to do really amazing things.

"And I’m going to sit back and smile.”

At the Mayan ruin of Uxmal, Mexico, but researcher Kirsten Bohn bends down beside a narrow crack in one of the ancient limestone walls. “Do you hear them?” she asks. “The twittering? That’s our bats, and they’re singing.” I lean in, too, and listen. It takes a moment for my ears to adjust to the bats’ soft sounds, and then the air seems to fill with their birdlike trills, chirps and buzzes.

The twittering calls are the songs of Nyctinomops laticaudatus, the broad-eared bat—one of several species.

THE RE’S JUST SOMETHING THAT’S REALLY SPECIAL ABOUT OPEN SCIENCE, WHERE EVERYONE IS SHARING EVERYTHING AND BUILDING ON EACH OTHER. AND ONCE IT GETS INTO THE INDUSTRY, IT’S NOT OPEN SCIENCE. THEY’RE PROTECTING IT. THEY’RE HIDING IT UNTIL THEY GET THE PATENT ISSUED.” — Lenny Seligman

When it came to how much the defense paid him, the response might also be, “Oh, my god!” That perky attorney made a point of making him divulge the fee in court: $400 an hour. “It was more money than I had ever made in a short amount of time,” he recalled in the interview. “It was a lot of money for me.”

The amount of money these companies dumped on this lawyer certainly raised larger concerns about the corrupting influence of big money in science, but it’s got to be small enough that you’re not doing the same thing that the big labs are doing because we don’t have the same resources.”

Focus on Students

Today, Seligman speaks about his former students as if they were his kids. He makes a point of mentioning them in his PowerPoint presentation, and even notes who got married and who just had a baby.

“We are so lucky to be a place that gets such great students,” he says. “It’s our job to work with them, to get them excited about science and keep them excited about it. I have no doubt they’re going to do really amazing things.

“And I’m going to sit back and smile.”

At the Mayan ruin of Uxmal, Mexico, but researcher Kirsten Bohn bends down beside a narrow crack in one of the ancient limestone walls. “Do you hear them?” she asks. “The twittering? That’s our bats, and they’re singing.” I lean in, too, and listen. It takes a moment for my ears to adjust to the bats’ soft sounds, and then the air seems to fill with their birdlike trills, chirps and buzzes.

The twittering calls are the songs of Nyctinomops laticaudatus, the broad-eared bat—one of several species.

THE RE’S JUST SOMETHING THAT’S REALLY SPECIAL ABOUT OPEN SCIENCE, WHERE EVERYONE IS SHARING EVERYTHING AND BUILDING ON EACH OTHER. AND ONCE IT GETS INTO THE INDUSTRY, IT’S NOT OPEN SCIENCE. THEY’RE PROTECTING IT. THEY’RE HIDING IT UNTIL THEY GET THE PATENT ISSUED.” — Lenny Seligman

When it came to how much the defense paid him, the response might also be, “Oh, my god!” That perky attorney made a point of making him divulge the fee in court: $400 an hour. “It was more money than I had ever made in a short amount of time,” he recalled in the interview. “It was a lot of money for me.”

The amount of money these companies dumped on this lawyer certainly raised larger concerns about the corrupting influence of big money in science, but it’s got to be small enough that you’re not doing the same thing that the big labs are doing because we don’t have the same resources.”

Focus on Students

Today, Seligman speaks about his former students as if they were his kids. He makes a point of mentioning them in his PowerPoint presentation, and even notes who got married and who just had a baby.

“We are so lucky to be a place that gets such great students,” he says. “It’s our job to work with them, to get them excited about science and keep them excited about it. I have no doubt they’re going to do really amazing things.

“And I’m going to sit back and smile.”

At the Mayan ruin of Uxmal, Mexico, but researcher Kirsten Bohn bends down beside a narrow crack in one of the ancient limestone walls. “Do you hear them?” she asks. “The twittering? That’s our bats, and they’re singing.” I lean in, too, and listen. It takes a moment for my ears to adjust to the bats’ soft sounds, and then the air seems to fill with their birdlike trills, chirps and buzzes.

The twittering calls are the songs of Nyctinomops laticaudatus, the broad-eared bat—one of several species.

THE RE’S JUST SOMETHING THAT’S REALLY SPECIAL ABOUT OPEN SCIENCE, WHERE EVERYONE IS SHARING EVERYTHING AND BUILDING ON EACH OTHER. AND ONCE IT GETS INTO THE INDUSTRY, IT’S NOT OPEN SCIENCE. THEY’RE PROTECTING IT. THEY’RE HIDING IT UNTIL THEY GET THE PATENT ISSUED.” — Lenny Seligman

When it came to how much the defense paid him, the response might also be, “Oh, my god!” That perky attorney made a point of making him divulge the fee in court: $400 an hour. “It was more money than I had ever made in a short amount of time,” he recalled in the interview. “It was a lot of money for me.”

The amount of money these companies dumped on this lawyer certainly raised larger concerns about the corrupting influence of big money in science, but it’s got to be small enough that you’re not doing the same thing that the big labs are doing because we don’t have the same resources.”

Focus on Students

Today, Seligman speaks about his former students as if they were his kids. He makes a point of mentioning them in his PowerPoint presentation, and even notes who got married and who just had a baby.

“We are so lucky to be a place that gets such great students,” he says. “It’s our job to work with them, to get them excited about science and keep them excited about it. I have no doubt they’re going to do really amazing things.

“And I’m going to sit back and smile.”

At the Mayan ruin of Uxmal, Mexico, but researcher Kirsten Bohn bends down beside a narrow crack in one of the ancient limestone walls. “Do you hear them?” she asks. “The twittering? That’s our bats, and they’re singing.” I lean in, too, and listen. It takes a moment for my ears to adjust to the bats’ soft sounds, and then the air seems to fill with their birdlike trills, chirps and buzzes.

The twittering calls are the songs of Nyctinomops laticaudatus, the broad-eared bat—one of several species.

THE RE’S JUST SOMETHING THAT’S REALLY SPECIAL ABOUT OPEN SCIENCE, WHERE EVERYONE IS SHARING EVERYTHING AND BUILDING ON EACH OTHER. AND ONCE IT GETS INTO THE INDUSTRY, IT’S NOT OPEN SCIENCE. THEY’RE PROTECTING IT. THEY’RE HIDING IT UNTIL THEY GET THE PATENT ISSUED.” — Lenny Seligman

When it came to how much the defense paid him, the response might also be, “Oh, my god!” That perky attorney made a point of making him divulge the fee in court: $400 an hour. “It was more money than I had ever made in a short amount of time,” he recalled in the interview. “It was a lot of money for me.”

The amount of money these companies dumped on this lawyer certainly raised larger concerns about the corrupting influence of big money in science, but it’s got to be small enough that you’re not doing the same thing that the big labs are doing because we don’t have the same resources.”

Focus on Students

Today, Seligman speaks about his former students as if they were his kids. He makes a point of mentioning them in his PowerPoint presentation, and even notes who got married and who just had a baby.

“We are so lucky to be a place that gets such great students,” he says. “It’s our job to work with them, to get them excited about science and keep them excited about it. I have no doubt they’re going to do really amazing things.

“And I’m going to sit back and smile.”

At the Mayan ruin of Uxmal, Mexico, but researcher Kirsten Bohn bends down beside a narrow crack in one of the ancient limestone walls. “Do you hear them?” she asks. “The twittering? That’s our bats, and they’re singing.” I lean in, too, and listen. It takes a moment for my ears to adjust to the bats’ soft sounds, and then the air seems to fill with their birdlike trills, chirps and buzzes.

The twittering calls are the songs of Nyctinomops laticaudatus, the broad-eared bat—one of several species.
of bats that scientists have identified as having tunes remarkably similar to those of birds. Like the songs of birds, bats’ melodies are composed of multiple syllables; they’re rhythmic and have patterns that are repeated. ¶ And like birds, these bats sing not during the dark of night, but in the middle of the day, making it easy for us to see them, too.

Bohn, a behavioral ecologist at Florida International University in Miami, presses her face against the crack in the wall, and squints. “Well, hello there,” she says. I follow her example, and find myself eyeball-to-eyeball with one of the bats that’s sandwiched inside. He scuttles back, but his jaw s chatter at me, “Zzzzzzzz.” ¶ “He’s telling us to back off, to go away,” Bohn says, translating. “He wants to get back to his singing.”

That suits Bohn, who has traveled to Uxmal to record the broad-eared bats’ tunes for her study on the evolution and function of bat song—research that may help decode what the bats are saying to one another with their songs, and even teach us something about the origins of human language.

Not so long ago, most animal scientists and linguists regarded the sounds that animals and humans make as markedly different. Language was considered to be something only humans possessed, supposedly it appeared de novo instead of evolving via natural selection. And animals were regarded as incapable of intentionally uttering any sound. Songs, barks, roars, whistles: These were involuntary responses to some stimulus, just as your knee jerks when your doctor taps it. But since the 1990s, the notion of language as a uniquely human skill has fallen to the wayside as researchers in genetics, neurobiology and ethology discover numerous links between animal vocalizations and those of humans. Take grammar and syntax, the rules that determine how words can be combined into phrases and sentences. Most linguists still insist that animal calls lack these fundamental elements of language. But primatologists studying the vocalizations of male Campbell’s monkeys in the forests of the Ivory Coast have found that they have rules (a “proto-syntax,” the scientists say) for adding extra sounds to their basic calls. We do this, too. For instance, we make a new word “henhouse,” when we add the word “house” to “hen.” The monkeys have three alarm calls: Hek for eagles, Krak for leopards, and Boom for disturbances such as a branch falling from a tree. By combining these three sounds the monkeys can form new messages. So, if a monkey wants another monkey to join him in a tree, he calls out “Boom boom!” They can also alter the meaning of their basic calls simply by adding the sound “oo” at the end, very much like we change the meanings of words by adding a suffix. Hek-oo alerts other monkeys to threats, such as an eagle perched in a tree, while Krak-oo serves as a general warning.

Scientists have found—and decoded—warning calls in several species, including other primates, prairie dogs, meerkats and chickens. All convey a remarkable amount of information to their fellows. The high-pitched barks of prairie dogs may sound alike to us, but via some variation in tone and frequency he or she can shout out a surprisingly precise alert: “Look out! Tall human in blue, running.” Or, “Look out! Short human in yellow, walking!”
Many animals use their calls to announce that they’ve found food, or are seeking mates, or want others to stay out of their territories. Ornithologists studying birdsong often joke that all the musical notes are really about nothing more than sex, violence, food and alarms. Yet we’ve learned the most about the biological roots of language via songbirds because they hear their songs just as we do, by listening to others. The skill is called vocal learning, and it’s what makes it possible for mockingbirds to mimic a meowing cat or a melodious sparrow, and for pet parrots to imitate their owners. Our dogs and cats, alas, will never say “I love you, too” or “Good night, sweetheart, good night,” no matter how many times we repeat the phrases to them, because they lack both the neural and physical anatomy to hear a sound and then repeat it. Chimps and bonobos, our closest relatives, cannot do this either, even if they are raised from infancy in our homes.

Via vocal learning, some species of songbirds acquire more than 100 tunes. And via vocal learning, the chicks of a small parrot, the green-rumped parrotlet, obtain their “signature contact calls”—sounds that serve the same function as our names. Scientifically accurate, signature contact calls. Scientists have discovered that parrotlets have names by collecting thousands of the birds’ peeps, then converting them to spectrograms, which he subsequently analyzed for subtle similarities and differences via a specialized computer program. And how does a young parrotlet get his or her name? “We think their parents name them,” Berg said—which would make parrots the first animals, aside from humans, known to assign names to their offspring.

Parrotlets aren’t the only animals that have names (or to be scientifically accurate, signature contact calls). Scientists have discovered that dolphins, which are also vocal-learners, have these calls, although these seem to be innate; the mothers aren’t naming their calves. And some species of bats have names, which they include when singing, and in other social situations.

Berg discovered that parrotlets have names by collecting thousands of the birds’ peeps, then converting them to spectrograms, which he subsequently analyzed for subtle similarities and differences via a specialized computer program. And how does a young parrotlet get his or her name? “We think their parents name them,” Berg said—which would make parrots the first animals, aside from humans, known to assign names to their offspring.

Parrotlets aren’t the only animals that have names (or to be scientifically accurate, signature contact calls). Scientists have discovered that dolphins, which are also vocal-learners, have these calls, although these seem to be innate; the mothers aren’t naming their calves. And some species of bats have names, which they include when singing, and in other social situations.


Bats sing, for the same reason birds do: to attract mates and to defend territories. They’re not negotiating or conversing, but their loveldor ditties are plenty informative nonetheless. After analyzing 3,000 recordings of male European Pipistrellus nathusii bats, for instance, a team of Czech researchers reported that the songs always begin with a phrase (which the scientists termed motif A) announcing the bat’s species. Next comes the vocal signature (motifs B and C), information about the bat’s population (motif D), and an explanation about where to land (motif E).

“Hence, translated into human words, the message ‘ABC’ could be approximately: (A) ‘Pay attention: I am a Pipistrellus, (B,C) specifically male 17b, (E) land here, (D) we share a common social identity and common communication pool,’” the researchers wrote in their report.

Bohn suspects that the tunes of her bats at Uxmal convey the same type of information. “The guys are competing for females with their songs,” she says, “so they can’t afford to stop singing.” She doesn’t yet know what the females listen for in the voice of a N. laticaudata, but expects that something in a male’s intonation or his song’s beat gives her clues about his suitability as a mate.

But her focus is on another question: Are these bats long-term vocal learners, as are humans and some species of birds, such as parrots? “If they are,” she explains, “then they might be a good model for studying the origins of human speech”—which would make bats the first mammal ever used for such research.

Bohn had earlier recorded some of the bats’ songs, and digitally altered these so that they sounded like the refrains of different bats—strangers. At the wall, she attaches a pair of microphones and a single speaker to a tripod, and points the equipment at the fissure, where the bats sing. Pushing a button on her laptop, she broadcasts the remixed but songs to the tiny troubadours, who respond with even louder twitters, trills, and buzzes. Bohn watches their responses as they’re converted into sonograms that stream across her laptop’s screen like seismic pulses. These are territorial buzzes and contact calls, Bohn explains. “They know there’s an intruder.” She’s silent for a moment, and then beams. “Yes! One of the bats is trying to match the intruder’s call. He doesn’t have it exactly right, but he’s close—he’s so close, and it’s hard.”

But there it was: the first bit of evidence that bats are long-term vocal learners. Just like us.
It was almost dawn outside Lincoln and Edmunds halls, and the clicking of laptop keys on a Saturday morning had slowed to a persistent few. Three students slept in chairs in the Edmunds lobby, one next to a lone coder at his keyboard. In the Lincoln lobby, a quilt lay seemingly abandoned in a clump on the floor. Then it moved, and the petite student who had been slumbering beneath it climbed into a chair and disappeared under the quilt again.

Upstairs, John Verticchio ’15 looked around the windowless room where he’d spent the night working with three friends. “Is the sun up yet?” he asked.
Welcome to the 5C Hackathon, the all-nighter that lures as many as 250 students from The Claremont Colleges each semester to stay up building creative and often elaborate software projects and apps in a mere 12-hour span. It is a deadline-driven, energy-drink-fueled rush to create something that might just become a Silicon Valley startup but is more likely to be remembered as one of those crazily fun things people do in college when they are afloat with intelligence and passion.

The event is student-created and student-led, built from scratch by three Pomona College students in 2012 with a budget of $1,000 and 30 participants. By the fifth 5C Hackathon in April, the budget had doubled to $2,000 and the semianual event had drawn sponsors that included Intuit, Google and Microsoft. The codefest also is supported by Claremont McKenna’s Silicon Valley Program, which helps students of The Claremont Colleges spend a sort of “semester abroad,” studying app, replaces user passwords on websites with a wave of your smartphone and has been featured by The New York Times.)

“I came in my first year and I knew I wanted to study computer science, and I was hoping there would be, like, a scene here for people who like building stuff, and there wasn’t. There was nothing,” said Pollik, who didn’t start coding until his senior year in high school. “So I started trying to track down people who were interested in that sort of thing.”

He found them in Byrne and in Merril, who had planned to be an English major but started coding after an introductory computer science class as a freshman at Pomona.

The event early on gave the 5Cs an early start on what has now become a national phenomenon. “Hackathons were a new thing and most were on large campuses,” Merril said. Hackathons have exploded into prominence in the last two years. The second LA Hacks competition at UCLA in April drew more than 4,000 registrants from universities that included UCLA, USC, Stanford, UC Berkeley and Harvard for a 36-hour event it touted as a “5-star hacking experience” with VIP attendees. Civic groups and government organizations have gotten into the act, too, with the second National Day of Civic Hacking on May 31 and June 1 featuring events in 103 cities, many focused on building software that could help improve communities and government.

While some hackathons have gone grander and glitzier—recent events in San Francisco during the summer before starting at Google in Seattle in late September—three of the founders have left hackathon, will return to stage more all-night programming binges, the tradition now entrenched. Russell, his night of coding done, walked out into the quiet of an early Saturday morning, unable to make it to the presentations. He had a Frisbee tournament at 8.

For more photos from the Fall 2014 5C Hackathon, see the inside front cover and pages 1–5.

Claremont McKenna computer science student—brothers Joe and Chad Newby, both '14, built the project, using Alexa, Python, iOS and Node.js, along with three other
Robert Gaines, associate professor of geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a stunning new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“We had a hunch that if we followed the geology at Pomona, was part of the team that announced the discovery of a striking new Burgess Shale fossil site in Canada’s Kootenay National Park earlier this year.

“The resulting book is Proof: The Science of Booze, a book that takes that martini or whiskey sour or sauvignon blanc in your hand and traces its path from its origins in a cultivated yeast cell through to its various transformations—fermentation, distillation and aging—and then follows its trek across the bar and through your sensory equipment, bloodstream and brain, concluding inevitably on the morning after with a chapter on hangovers. Each step of the way, Rogers introduces us to the work of producers who are seeking ways to refine their processes and researchers who are trying to understand why and how it all happens—both in the distillery and inside our heads.

“Therein, Rogers says, lay the biggest surprise that awaited him in his three years of research and writing. “I really was shocked that the brain researchers haven’t articulated a full mechanism for how ethanol affects the human brain,” he says. “It really doesn’t take long, when you talk to them, for them to say, ‘We just don’t know what it does.’ That comes from the people looking at networks and regions of the brain. It comes from the people who are looking at small molecules and how those affect individual neurons and synapses. It comes from people who study receptors. No matter what angle you come from, if you’re studying ethanol in the brain, they just can’t tell you exactly how it does what it does. It’s the only recreational drug that human beings use that that’s true for.”

“In fact, those gaps in our knowledge become a theme, continuing right up to the end, with the mystery of hangovers and what to do about them. Rogers is straightforward through it all, offering tantalizing glimpses and competing theories and explaining the science behind what is known and what is suspected, while making sure in his often sardonic style that we understand where the holes are and how sketchy some of the science remains.

“I think we make a mistake sometimes in science journalism in thinking that the interesting stories are discovery narratives,” he says. “That’s a good tale to tell, but scientists are most excited, I think, when they don’t have an answer, when there’s a question. Questions are really exciting. I was, at first, chagrined and...
In today’s session of Professor Valerie Thomas’s class on Afrofuturism, the discussion focuses on a painting by Christy Freeman and how the image both represents and challenges our conceptions of motherhood and the ideal of African Diaspora spirituality with Christianity.

Thomas: The belief is that when you are born, everyone is a protector, an Orisha who corresponds to the Yoruba goddess or god, like a guardian spirit or a guardian angel. You might have relationships with one or more Orishas and it is within your power as a human being to cultivate those relationships and to learn the lessons that Orisha has to teach you.

There are many Orishas and Catholic saint correspondences in the African and African American spiritual traditions. A richly layered tapestry of African cosmology encoded within Christian reality. If you see images of Mary, and she’s surrounded by stars and in this archetypal full of color, and she’s standing on a rock on the sea, all that ideography is consistent with Yemanje, the ocean goddess who is seen as the ultimate protector and great mother figure. So she may be respected as Mary, but the figure will also be recognized and loved as Yemanje.

Each Orisha can have dozens of titles. The Real World, a Haitian Orisha or Lwa, who corresponds to the Yoruba Oshun and is also related to Yemanje. Ekalu is also connected to nurturing and motherfulness, but she is the personification of love and eroticism, as well as a seductive, flirtatious, loving, jewelry, mirrors and sweets and wants to see people happy. But beneath that sweet façade, she’s a formidable persona. I’m going to show you a painting of Ekalu Dantone, a different side or path of this deity. I’d like to have you respond to the image first, and then I’ll tell you what fascinates me about it.

Chloe: In the heart on the crown, the top reminds me of ram’s horns, giving the sense that this is someone who is tender and warm but also can defend herself.

The Instructor: Valerie Thomas

A member of the faculty since 1999, Valerie Thomas is an associate professor of English and Black Studies. She earned her B.A., M.A. and Ph.D. from UC Berkeley and M.A. from UCLA. A recipient of Pomona’s Irvine Distinguished Faculty Mentor Award, her research interests include African Diaspora literary and cultural theory, vernacular culture and language, Tom Morrison, Afrofuturism and contemporary Native American literature.

From the Reading List:

Octavia E. Butler: Dawn, Ta-Nehisi Coates: Seven very short stories about drones told through tw eets) (2014, Overlook Hardcover), a painting by Christy Freeman.

The Class: Afrofuturism

The course’s name refers to Black science fiction, but extends far beyond that definition to engage futuristic, speculative and vernacular aesthetic modes that blend conventional genres and change perceptions of race, gender and what it means to be human.

Professor Valerie Thomas

In her second novel, Addie Greene’s life unravels after learning that her family is not what she thought it was. After her father dies, Addie and her mother try to rebuild their lives in Los Angeles, but secrets from Addie’s past come to light and threaten her relationships. Addie must decide whether to confront the truth or continue living in denial.

The Instructor:

Valerie Thomas

A member of the faculty since 1999, Valerie Thomas is an associate professor of English and Black Studies. She earned her B.A., M.A. and Ph.D. from UC Berkeley and M.A. from UCLA. A recipient of Pomona’s Irvine Distinguished Faculty Mentor Award, her research interests include African Diaspora literary and cultural theory, vernacular culture and language, Tom Morrison, Afrofuturism and contemporary Native American literature.

From the Reading List:

Octavia E. Butler: Dawn, Ta-Nehisi Coates: Seven very short stories about drones told through tw eets) (2014, Overlook Hardcover), a painting by Christy Freeman.

The Class: Afrofuturism

The course’s name refers to Black science fiction, but extends far beyond that definition to engage futuristic, speculative and vernacular aesthetic modes that blend conventional genres and change perceptions of race, gender and what it means to be human.

Professor Valerie Thomas

In her second novel, Addie Greene’s life unravels after learning that her family is not what she thought it was. After her father dies, Addie and her mother try to rebuild their lives in Los Angeles, but secrets from Addie’s past come to light and threaten her relationships. Addie must decide whether to confront the truth or continue living in denial.

The Instructor: Valerie Thomas

A member of the faculty since 1999, Valerie Thomas is an associate professor of English and Black Studies. She earned her B.A., M.A. and Ph.D. from UC Berkeley and M.A. from UCLA. A recipient of Pomona’s Irvine Distinguished Faculty Mentor Award, her research interests include African Diaspora literary and cultural theory, vernacular culture and language, Tom Morrison, Afrofuturism and contemporary Native American literature.

From the Reading List:

Octavia E. Butler: Dawn, Ta-Nehisi Coates: Seven very short stories about drones told through tw eets) (2014, Overlook Hardcover), a painting by Christy Freeman.

The Class: Afrofuturism

The course’s name refers to Black science fiction, but extends far beyond that definition to engage futuristic, speculative and vernacular aesthetic modes that blend conventional genres and change perceptions of race, gender and what it means to be human.

Professor Valerie Thomas

In her second novel, Addie Greene’s life unravels after learning that her family is not what she thought it was. After her father dies, Addie and her mother try to rebuild their lives in Los Angeles, but secrets from Addie’s past come to light and threaten her relationships. Addie must decide whether to confront the truth or continue living in denial.

The Instructor: Valerie Thomas

A member of the faculty since 1999, Valerie Thomas is an associate professor of English and Black Studies. She earned her B.A., M.A. and Ph.D. from UC Berkeley and M.A. from UCLA. A recipient of Pomona’s Irvine Distinguished Faculty Mentor Award, her research interests include African Diaspora literary and cultural theory, vernacular culture and language, Tom Morrison, Afrofuturism and contemporary Native American literature.

From the Reading List:

Octavia E. Butler: Dawn, Ta-Nehisi Coates: Seven very short stories about drones told through tw eets) (2014, Overlook Hardcover), a painting by Christy Freeman.

The Class: Afrofuturism

The course’s name refers to Black science fiction, but extends far beyond that definition to engage futuristic, speculative and vernacular aesthetic modes that blend conventional genres and change perceptions of race, gender and what it means to be human.

Professor Valerie Thomas

In her second novel, Addie Greene’s life unravels after learning that her family is not what she thought it was. After her father dies, Addie and her mother try to rebuild their lives in Los Angeles, but secrets from Addie’s past come to light and threaten her relationships. Addie must decide whether to confront the truth or continue living in denial.

The Instructor: Valerie Thomas

A member of the faculty since 1999, Valerie Thomas is an associate professor of English and Black Studies. She earned her B.A., M.A. and Ph.D. from UC Berkeley and M.A. from UCLA. A recipient of Pomona’s Irvine Distinguished Faculty Mentor Award, her research interests include African Diaspora literary and cultural theory, vernacular culture and language, Tom Morrison, Afrofuturism and contemporary Native American literature.

From the Reading List:

Octavia E. Butler: Dawn, Ta-Nehisi Coates: Seven very short stories about drones told through tw eets) (2014, Overlook Hardcover), a painting by Christy Freeman.

The Class: Afrofuturism

The course’s name refers to Black science fiction, but extends far beyond that definition to engage futuristic, speculative and vernacular aesthetic modes that blend conventional genres and change perceptions of race, gender and what it means to be human.

Professor Valerie Thomas

In her second novel, Addie Greene’s life unravels after learning that her family is not what she thought it was. After her father dies, Addie and her mother try to rebuild their lives in Los Angeles, but secrets from Addie’s past come to light and threaten her relationships. Addie must decide whether to confront the truth or continue living in denial.

The Instructor: Valerie Thomas

A member of the faculty since 1999, Valerie Thomas is an associate professor of English and Black Studies. She earned her B.A., M.A. and Ph.D. from UC Berkeley and M.A. from UCLA. A recipient of Pomona’s Irvine Distinguished Faculty Mentor Award, her research interests include African Diaspora literary and cultural theory, vernacular culture and language, Tom Morrison, Afrofuturism and contemporary Native American literature.

From the Reading List:

Octavia E. Butler: Dawn, Ta-Nehisi Coates: Seven very short stories about drones told through tw eets) (2014, Overlook Hardcover), a painting by Christy Freeman.

The Class: Afrofuturism

The course’s name refers to Black science fiction, but extends far beyond that definition to engage futuristic, speculative and vernacular aesthetic modes that blend conventional genres and change perceptions of race, gender and what it means to be human.

Professor Valerie Thomas

In her second novel, Addie Greene’s life unravels after learning that her family is not what she thought it was. After her father dies, Addie and her mother try to rebuild their lives in Los Angeles, but secrets from Addie’s past come to light and threaten her relationships. Addie must decide whether to confront the truth or continue living in denial.

The Instructor: Valerie Thomas

A member of the faculty since 1999, Valerie Thomas is an associate professor of English and Black Studies. She earned her B.A., M.A. and Ph.D. from UC Berkeley and M.A. from UCLA. A recipient of Pomona’s Irvine Distinguished Faculty Mentor Award, her research interests include African Diaspora literary and cultural theory, vernacular culture and language, Tom Morrison, Afrofuturism and contemporary Native American literature.

From the Reading List:

Octavia E. Butler: Dawn, Ta-Nehisi Coates: Seven very short stories about drones told through tw eets) (2014, Overlook Hardcover), a painting by Christy Freeman.
Thomas: Yes, this is reworking stories about the feminine, about gender, about power, breaking some of those conventional storylines that associate romance with sentimentality and weakness and docility. There’s tension that comes through that might, in other contexts, seem diametrically opposed, but in this figure they are combined. The softness and hardness, the love, the heart, but also the dagger.

Sophie: It feels like a lot more emphasis on the mother figure, but then also there’s a protective quality that I don’t think is in Western portraits. Mary isn’t usually actively protecting the baby and wielding a knife or wielding any sort of weaponry.

Thomas: What do we know as viewers about those images that you’re talking about? Where Mary’s not necessarily on watch, on guard; the child is just in his mother’s arms. How does the story end? Those images of Madonna and child, that’s the beginning of the story. We already know the ending. This is a disturbing image in that this Mary is thinking off script. It’s a stance of agency and aggression, a huge intervention on the narrative and on the established, fundamental, archetypal, Christian narrative, even though it’s still framed as Christianity.

Byron: I have a question about her necklace. I want to know: what’s the significance of that as a Christian icon?

Thomas: It’s a heart and what else? What is hanging below the heart?

Chloe: It could be a skull.

Byron: It looks like a nail.

Thomas: Is it a nail, are we agreeing that it’s a nail?

Byron: There is also something that looks like a snake.

Thomas: I’m so glad you brought up the necklace. We need to consider all those possibilities. The snake is an ancient Vodun archetype, not evil but representat-

ive of life and transformation. What about the line of that little dagger on the necklace? Where’s the line going?

Renata: It’s going right towards him.

Thomas: It’s going right towards him, right? In this case, Mary’s saying, “Well, I have a knife, too.”

Sophie: The stars in the painting also are evocative for me. It’s like faith of some sort, which maybe is nonsensical or unreasonable, because they also have resonance with anti-faith.

Thomas: In a particularly African-American or African diasporic context, how might you come to be thinking about the stars?

Sophie: A star guide for going home.

Catherine: Using the signs of the stars to move north.

Thomas: To move north because?

Catherine: Out of slavery. To freedom. The stars are the liberation narrative, at least back in the day of enslavement when knowing about astronomy was a useful skill in escaping and moving towards liberation. When I first saw this amazing picture it immediately tweaked my understanding of the character Sethe in Toni Morrison’s Beloved. She commits infanticide when

the slave catchers are on her heels. The controversy, the tension in this story is the question: Is this motherhood? I think the painting also asks that same question. What if the knife ends up being something that is protecting the child by keeping it from the attacker who will certainly dehumanize and obliterate its spirit? Sethe says, “I wasn’t going to let them take that child, wasn’t going to let them make that child go through the monstrosity that I went through.” It redefines the terms of motherhood as not only creator but also potential destroyer, murmurer but also warrior. That’s the ultimate extreme case, extreme scenario, but it does bring the idea of the feminine principle into connection with the highest possible stakes of life and death.
A native of China, Hong and her mother moved to Brooklyn in 2001. When her mother developed life-threatening liver disease, Hong helped her navigate the often confusing public hospital system. Determined to improve access to health care for other low-income immigrants, Hong developed a proposal through the Draper Center to train college volunteers as health navigators for patients with limited English proficiency and literacy. Hong devotes much of her free time to the Draper Center, working as a coordinator for programs such as Alternabreak, a community engagement spring break program.

History as explanation

“Because of my immigrant background, I like to trace things back to their origins, whether it’s the earliest pilgrims, or Chinese immigrants who came in the 1800s, or recent refugee groups. It can really help explain some of what we see now. Why do Chinatowns exist in the U.S. today? What were the Chinese discriminatory laws that were passed back then and how do they still impact people today?”

In the library and on the ground

“I’ve been working with Professor (Samuel) Yamashita on the impact Chinese restaurants have had on Chinese-American communities. In the summer after my sophomore year, I went to New York, where I interviewed and observed children who help out in their parents’ Chinese takeout restaurants and Korean grocery stores. I went back to New York this summer, and to Honolulu and San Francisco, where I conducted archival research in local libraries and museums on high-end Chinese restaurants. I wanted to know what these upscale restaurants mean in the context of Chinese immigration and race relations, and the history of restaurants in the three cities. So, in a sense, my research has been both sociological and historical.”

Hong Deng Gao ’15

MAJOR: History

SUPPORTED BY: Financial Aid, Draper Center for Community Partnerships, Summer Undergraduate Research Program, The Annual Fund

“A native of China, Hong and her mother moved to Brooklyn in 2001. When her mother developed life-threatening liver disease, Hong helped her navigate the often confusing public hospital system. Determined to improve access to health care for other low-income immigrants, Hong developed a proposal through the Draper Center to train college volunteers as health navigators for patients with limited English proficiency and literacy. Hong devotes much of her free time to the Draper Center, working as a coordinator for programs such as Alternabreak, a community engagement spring break program.

History as explanation

“Because of my immigrant background, I like to trace things back to their origins, whether it’s the earliest pilgrims, or Chinese immigrants who came in the 1800s, or recent refugee groups. It can really help explain some of what we see now. Why do Chinatowns exist in the U.S. today? What were the Chinese discriminatory laws that were passed back then and how do they still impact people today?”

In the library and on the ground

“I’ve been working with Professor (Samuel) Yamashita on the impact Chinese restaurants have had on Chinese-American communities. In the summer after my sophomore year, I went to New York, where I interviewed and observed children who help out in their parents’ Chinese takeout restaurants and Korean grocery stores. I went back to New York this summer, and to Honolulu and San Francisco, where I conducted archival research in local libraries and museums on high-end Chinese restaurants. I wanted to know what these upscale restaurants mean in the context of Chinese immigration and race relations, and the history of restaurants in the three cities. So, in a sense, my research has been both sociological and historical.”

A mother’s struggle, a daughter’s inspiration

“My mom was the inspiration for my social entrepreneurship project with the Draper Center. She had liver disease, and from the time I was about 15 years old, I helped her deal with the public hospital system, because it was hard for her to do it on her own. She didn’t really speak any English and couldn’t read the signs or the documents or bills. When I got to Pomona, I started thinking more about this issue and how I could help other non-English speaking immigrants.”

Building a bridge to better health care

“The idea I came up with is Health Bridges, where bilingual college volunteers work with local hospitals to give parents like my mom the emotional support they need and help them understand and navigate the system.

A mother’s struggle, a daughter’s inspiration

“My mom was the inspiration for my social entrepreneurship project with the Draper Center. She had liver disease, and from the time I was about 15 years old, I helped her deal with the public hospital system, because it was hard for her to do it on her own. She didn’t really speak any English and couldn’t read the signs or the documents or bills. When I got to Pomona, I started thinking more about this issue and how I could help other non-English speaking immigrants.”

Building a bridge to better health care

“The idea I came up with is Health Bridges, where bilingual college volunteers work with local hospitals to give parents like my mom the emotional support they need and help them understand and

A mother’s struggle, a daughter’s inspiration

“My mom was the inspiration for my social entrepreneurship project with the Draper Center. She had liver disease, and from the time I was about 15 years old, I helped her deal with the public hospital system, because it was hard for her to do it on her own. She didn’t really speak any English and couldn’t read the signs or the documents or bills. When I got to Pomona, I started thinking more about this issue and how I could help other non-English speaking immigrants.”

Building a bridge to better health care

“The idea I came up with is Health Bridges, where bilingual college volunteers work with local hospitals to give parents like my mom the emotional support they need and help them understand and
IT MAY BE MOSTLY A BLUE-COLLAR GRIND AND REQUIRE A LOT OF DIFFERENT HATS, BUT ANDREW KESSLER '03 SAYS LIFE AS AN NFL AGENT ALSO HAS ITS TRANSCENDENT MOMENTS.

**The walls of the Athletes First offices are filled with autographed jerseys, photos and other memorabilia from their National Football League clients, including such household names as Aaron Rodgers, Ray Lewis, Drew Bledsoe and Clay Matthews. Among the jerseys and photos in Andrew Kessler's office is a framed copy of *Nowhere* from 2011 showing a photo of New York Jets quarterback Mark Sanchez celebrating a 28–21 playoff win over the New England Patriots with an exuberant scream and a handshake over the front railing of the stands. Kessler '03, who is a certified contract advisor and player agent with Athletes First in Laguna Hills, and who helped negotiate the (yes) 47-page rookie contract for Sanchez in 2011, served as the primary agent. Sanchez's victory over the New England Patriots with an exuberant scream and a handshake over the front railing of the stands.

Kessler's experience of helping Sanchez write his career-making contract for Super Bowl XLIII at the Meadowlands, before helping to negotiate his landmark deal. Of course, Athletes First was guaranteed to be on the winning side of that Super Bowl regardless, as the firm also represents several members of the Denver Broncos, including wide receiver Wes Welker and linebacker Von Miller.

Kessler, who resides in Laguna Beach with his wife, Alison, and son, Jordan (2), has found success in a highly-competitive, big-money industry at an age when he has been younger than some of his clients. He draws some personal parallels to his playing days for Pomona-Pitzer football, when his team was a combined 17–15 over four years despite fielding small rosters that were often significantly outweighed by their opponents.

"One lesson I learned from playing at Pomona is that you can't judge a book by its cover," he said. "Just about every game we played, we would lose the eyesight test. Sometimes if you just looked at the two teams in warm-ups, you'd think we'd lose by three or four touchdowns, but then the game would start and we'd win by playing harder, smarter or more fundamental football. You see the same things on the job, whether it be negotiating a contract or signing a player or issues with a client. The odds might look against you from the outside looking in, but you can accomplish your goals by digging deeper than the other guys and not being intimidated.

He is also quick to point out that his academic experience at Pomona has been a big influence on his career. "Most of what I have learned in this business has come from on-the-job training or from my dad," he said. "But the critical thinking and analytical skills that I use in my profession have come just as much from what I learned at Pomona, as an English major studying Henry James novels, as they have from taking law school courses in contract law."

Although Kessler willingly made a reference to Jerry Maguire, the fictional sports agent played by Tom Cruise in the 1996 movie (best remembered for the phrase, "show me the money"), he does laugh at the way the movie portrays his line of work. "I imagine it's the same way that real spies view James Bond movies," he says. "People may see the eight-figure deals in the headlines, but there's a real grind and blue-collar element to the job, which I enjoy. It takes months of negotiations and legwork to reach those deals. You can't just walk in and say 'give me this, I want it.' You have to justify your rationale to the team."

The life of a sports agent can also involve much more than negotiating the fine print of a 47-page contract, and Kessler feels that makes it even more rewarding. "One of my favorite things about this business is that you get to be involved in a lot of different charitable endeavors and other outside interests for your clients," he says. "I've helped our clients raise money for sick kids, families of veterans, youth football organizations and all sorts of things. Some clients just want you involved in one specific part of their lives, and with other clients, you find yourself wearing a lot of different hats—relationship counselor, wedding planner, financial advisor, and you get to talk to them all the time."

Kessler may also have a career building opportunity as the primary agent. 
Bowl. I’ve been there with Marqise Lee there to see Earl Thomas win a Super that bad. On my good days, I’ve been happy. My bad days aren’t really all bad. I’ve got 200 dollars generated. Failures happen, and success can be defined by wins and losses in the early stages and if nothing else, it’s really fun. Some might call it a risky move to invest in something on my own, but that’s always been my personality. I tried football and basketball, and I understand that philosophy, but that’s always been my personality.

Blaisdell Distinguished Alumni Awards for 2014

The Blaisdell Distinguished Alumni Award honors a great contributor in their professions or community service, particularly those who have lived up to the quotation from James A. Blaisdell which is inscribed into the gates of the College: “They only are loyal to this college who departing bear their added riches in true for mankind.” This year, there are three winners: Ifonjy “Tony” Menkiti ’84 taught philosophy at Wellesley College for 40 years and is the author of four collections of poetry: Before a Common Soul (2007), On Altar, the Bright Light (2005), The Jabot of Folding Bodies (1978), and Affirmations (1971). He is the owner of the Grolier Bookshop and the 10-acre Grolier Poetry Farm in Square, the nation’s oldest continuous all-poetry bookshop.

Ben in Onitsuka, Nigeria, he came to Pomona in 1961 on the ASPU program (American Scholar Program of American Universities). After Pomona, he attended Columbia University Pulitzer School of Journalism, New York University and Harvard University. In 1973, he received a fellowship in poetry from the Massachusetts State Foundation on the Arts Humanities, but toured in 1978 by an award from the National Endowment for the Arts. In addition to his collections, his poems have appeared in Sewanee Review, Ringoletto, New Directions, The Massachusetts Review and other publications. In 1998, he received the Finisaki Prize for Excellence in Teaching from Wellesley College.

Joe Palca ’74 has been a science correspondent for National Public Radio since 1992. He has covered a range of topics, from biomedical research to astronomy, and is currently focused on the series, Joe’s Big Ideas, which explores the mind and motivations of scientists and inventors.

Palca began his career in 1982 as a health producer for the CBS affiliate in Washington, D.C. In 1986, he began a seven-year stint at the print journal Nature in London and then with Science Magazine. In 2009, he took a six month leave from NPR to become science writer in residence at the Huntington Library, Art Collections and Botanical Gardens.

Palca has won numerous awards for his work, including the National Academies Communications Award, the Science in Society Award of the National Association of Science Writers and the American Association for the Advancement of Science Prize. With Flora Lichtman, Palca is the co-author of Annoying: The Science of What Bugs Us (Wiley, 2011). A psychology major at Pomona, he later earned both an M.S. and a Ph.D. in psychology at UCSF, where he studied human sleep physiology.

Rip Rapson ’74 is president and CEO of The Kresge Foundation, a national, private foundation based in Detroit. Since 2006, he has led Kresge in developing programs in arts and culture, education, environment, health services and human services and the renewal of Detroit, distributing approximately $150 million annually. Rapson was a political science major at Pomona, graduating magna cum laude. After attending Columbia Law School, he joined the Minneapolis 3,089,000 of island. In 1991, he was recruited to head a Minneapolis-based Kresge Foundation and also launched the Itasca Project, a private sector-led effort to develop a new regional identity for the Twin Cities.

He is the author of two books, Troubled Waters, a chronicle of the Boundary Waters Canoe Area Wilderness Act legislation, in 1973, and Man, Sixty Years of Modern Design, a biography of his father, a renowned architect.

Hawaiian Seascapes (Big Island to Molokai)

With Geology Professor Rick Haslett

Board the Safari Explorer for a seven-day cruise from the Big Island of Hawaii to the island of Molokai, with stops on West Maui and the “private island” of Lanai. Enjoy dramatic volcanic landforms, marine life sightings, and opportunities for snorkeling, kayaking and stand-up paddleboarding. Join Geology Professor Rick Haslett for this seagoing tour, with a look into the islands’ volcanic origins, unique history, and astonishing diversity of sea life. Highlights include a night snorkel with giant Pacific mantas rays, a marine life search in the Humpback National Marine Sanctuary, and an evening po’i (feed) and Hawaiian jam session on Molokai.

Hawaii Seascapes (Big Island to Molokai)

With Geology Professor Rick Haslett

Dec. 5 –12, 2015

For more information about these or any of our other trips, please contact the Pomona College Alumni Office (909) 621-8110 or alum@pomona.edu.

Future Trip From Angles to Englands: The Christianization of Barbarian England

With History Professor Ken Weil

TBA (2015 or 2016)

The eight in a series of alumni walking trips with a medieval theme, this is the first involving the United Kingdom. Its purpose is to appreciate the fascinating history (attended by the Venerable Bede) of the conversion of the barbarian conquerors of England, starting the Irish and Roman missionaries who competed for the souls of the pagan Angles and Saxons. In Scotland, you will visit K’mart, Dunbarton and Loch Lomond; in England, Lindisfarne, Hadrian’s Wall and Durham Cathedral.

For more information about these or any of our other trips, please contact the Pomona College Alumni Office (909) 621-8110 or alum@pomona.edu.

Inspirational Young Alumni Award

Lt. Francine Segovia ’04, a U.S. Navy Reserve research psychologist at the Robert E. Mitchell Center for veteran and military families, assists survivors recovering from post-traumatic stress disorder (PTSD). She is part of a team of scientists and medical specialists examining how optimism and resilience may boost the health of extreme trauma survivors.

Segovia, who will return to active-duty service at the U.S. Naval Medical Center in Bethesda, is a project leader who attributes her research skills to experience she gained while at Pomona, including participation in the Summer Undergraduate Research Fellowships Program (SURF). “The critical thinking skills I used in an institution like Pomona possess have a direct impact on all your work moving forward,” she says. “These skills have helped me tremendously as I navigated my career.”

Joe Palca ’74 has been a science correspondent for National Public Radio since 1992. He has covered a range of topics, from biomedical research to astronomy, and is currently focused on the series, Joe’s Big Ideas, which explores the mind and motivations of scientists and inventors. Palca began his career in 1982 as a health producer for the CBS affiliate in Washington, D.C. In 1986, he began a seven-year stint at the print journal Nature in London and then with Science Magazine. In 2009, he took a six month leave from NPR to become science writer in residence at the Huntington Library, Art Collections and Botanical Gardens.

Palca has won numerous awards for his work, including the National Academies Communications Award, the Science in Society Award of the National Association of Science Writers and the American Association for the Advancement of Science Prize. With Flora Lichtman, Palca is the co-author of Annoying: The Science of What Bugs Us (Wiley, 2011). A psychology major at Pomona, he later earned both an M.S. and a Ph.D. in psychology at UCSF, where he studied human sleep physiology.

Joe Palca ’74 has been a science correspondent for National Public Radio since 1992. He has covered a range of topics, from biomedical research to astronomy, and is currently focused on the series, Joe’s Big Ideas, which explores the mind and motivations of scientists and inventors.

Palca began his career in 1982 as a health producer for the CBS affiliate in Washington, D.C. In 1986, he began a seven-year stint at a print journal, Nature in London and then with Science Magazine. In 2009, he took a six month leave from NPR to become science writer in residence at the Huntington Library, Art Collections and Botanical Gardens.

Palca has won numerous awards for his work, including the National Academies Communications Award, the Science in Society Award of the National Association of Science Writers and the American Association for the Advancement of Science Prize. With Flora Lichtman, Palca is the co-author of Annoying: The Science of What Bugs Us (Wiley, 2011). A psychology major at Pomona, he later earned both an M.S. and a Ph.D. in psychology at UCSF, where he studied human sleep physiology.

Joe Palca ’74 has been a science correspondent for National Public Radio since 1992. He has covered a range of topics, from biomedical research to astronomy, and is currently focused on the series, Joe’s Big Ideas, which explores the mind and motivations of scientists and inventors.

Palca began his career in 1982 as a health producer for the CBS affiliate in Washington, D.C. In 1986, he began a seven-year stint at a print journal, Nature in London and then with Science Magazine. In 2009, he took a six month leave from NPR to become science writer in residence at the Huntington Library, Art Collections and Botanical Gardens.

Palca has won numerous awards for his work, including the National Academies Communications Award, the Science in Society Award of the National Association of Science Writers and the American Association for the Advancement of Science Prize. With Flora Lichtman, Palca is the co-author of Annoying: The Science of What Bugs Us (Wiley, 2011). A psychology major at Pomona, he later earned both an M.S. and a Ph.D. in psychology at UCSF, where he studied human sleep physiology.

Joe Palca ’74 has been a science correspondent for National Public Radio since 1992. He has covered a range of topics, from biomedical research to astronomy, and is currently focused on the series, Joe’s Big Ideas, which explores the mind and motivations of scientists and inventors.

Palca began his career in 1982 as a health producer for the CBS affiliate in Washington, D.C. In 1986, he began a seven-year stint at a print journal, Nature in London and then with Science Magazine. In 2009, he took a six month leave from NPR to become science writer in residence at the Huntington Library, Art Collections and Botanical Gardens.

Palca has won numerous awards for his work, including the National Academies Communications Award, the Science in Society Award of the National Association of Science Writers and the American Association for the Advancement of Science Prize. With Flora Lichtman, Palca is the co-author of Annoying: The Science of What Bugs Us (Wiley, 2011). A psychology major at Pomona, he later earned both an M.S. and a Ph.D. in psychology at UCSF, where he studied human sleep physiology.

Joe Palca ’74 has been a science correspondent for National Public Radio since 1992. He has covered a range of topics, from biomedical research to astronomy, and is currently focused on the series, Joe’s Big Ideas, which explores the mind and motivations of scientists and inventors.

Palca began his career in 1982 as a health producer for the CBS affiliate in Washington, D.C. In 1986, he began a seven-year stint at a print journal, Nature in London and then with Science Magazine. In 2009, he took a six month leave from NPR to become science writer in residence at the Huntington Library, Art Collections and Botanical Gardens.

Palca has won numerous awards for his work, including the National Academies Communications Award, the Science in Society Award of the National Association of Science Writers and the American Association for the Advancement of Science Prize. With Flora Lichtman, Palca is the co-author of Annoying: The Science of What Bugs Us (Wiley, 2011). A psychology major at Pomona, he later earned both an M.S. and a Ph.D. in psychology at UCSF, where he studied human sleep physiology.
192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192

192
class notes

take another season to get all the shots they need. I'll let you know when my story appears in the magazine. In the meantime, please don't ask me about the story!

88% and 92%

88% and 92%
Before the school's next Reunion Weekend, the alumni magazine is about 47 of them! See '72 for photo caption.

Central Oregon Alumni, of which there are more than 300 members in 2010, was founded in 1968. An alumni association is a program that provides hands-on experience in the fields of leadership, capital and fund-raising for former students. It is also a way to make new friends and to network with others in similar careers.

The Life and Mind of Mark De-
Andrew Hong ’13 wants to start tinkering with children. Co-founder for the MIT Museum in Cambridge, Mass., Hong works to shine a light on the university’s high-tech research breakthroughs while bringing science education to local communities. Along the way, he’s found an outlet for his passion for getting people to engage with new technology and making the field of science less intimidating and more accessible for everyone.

INNOVATION MEETS EDUCATION

At MIT, Hong organizes programs designed to demystify research and create a “public face” for the institution. To do so, he brings children and families, the museum offers interactive discussions with MIT scientists who share their latest experiments and discoveries, from projects like creating new prosthetic body parts to designing better solar-powered lighting. Other events are geared more to an older crowd, like a program called “Drinkable Science” that explains the physics and chemistry behind common household items and technology. The idea is to “speak science in fun, everyday topics,” Hong explains.

A key mission of the museum is encouraging people to reconsider their assumptions that a certain technology or concept might be too complicated to understand. Hong tries to make visits feel more confident about their abilities by giving them a taste of the trial-and-error process that engineers and scientists wade through to develop their projects and activities with failure built in,” he says.

“If there’s an expectation that you’re not gonna go to it the first time, “

DEVELOPING INTO DESIGN

One of Hong’s favorite projects has been creating a new design and engineering space called the Idea Hub, where museum-goers can experiment with unfamiliar tools and learn skills like computer programming. Visitors do hands-on activities involving electronics and creating art with 3D printers. “Our goal is to teach people—to give people this hands-on experience—that so they feel empowered to engage with technology in the future,” Hong says.

Hong has been building up his own expertise by taking advantage of the resources he’s found in his community. The job gives him access to courses at MIT, where his assignments include tasks like programming 3D printers to generate artistic designs and “mocks.” Since getting here, it’s been a constant change in how to build things and how to think,” he says.

By expanding his knowledge, Hong says he’s been inspired to get others excited about tinkering. “It feeds back into my desire to show people that you can do this stuff! I’m a walking example of someone who didn’t have a background in this field, and now is competent enough to teach people creative problem-solving and the design process.”

Finding his fit

A neuroscience major at Pomona, Hong was always fascinated with the sciences, but didn’t picture himself as a teacher or researcher. After sophomore year he began to chart his own path, starting with a SUREP project at Professor of Art Mark Allen’s L.A. nonprofit, Machine Projects, where he was exposed to the idea of learning about technology through the use of art and creativity.

The next summer he landed an internship funded by the Career Development Office at the Exploratorium science museum in San Francisco, known for its participatory exhibits. His experience in Cambridge has given Hong a clearer vision for the future. His ultimate goal is to design educational technologies for the museum field, like the kind he uses every day in his work. Wherever he ends up, Hong says he will keep following his personal career inspiration, inspired by the advice of Pomona neuroscience professor Patrick Latimer.

“Her advice to me was, ‘Get really good at something you love, and convince someone that they need you.’” —Daniel Gould
1962, took a leave from San Diego and worked with USAA in Japan until the end of the war, then moved to Boston, where she worked for a year. She married Robert G. Moses, a U.S. Army Air Corps officer, in 1945, and returned to California. She joined the Los Angeles Times as a secretary in 1947, and was employed in the Personnel Department, where she worked for 22 years. She loved to travel and in the summer of 1971, she circumnavigated the globe by the northern route. She died in 1983.

**Robert G. Moses**

1912-1983

Robert G. Moses, a U.S. Army Air Corps officer, was a U.S. Army Air Corps officer, and a U.S. Army Air Corps officer, in 1945, and returned to California. He joined the Los Angeles Times as a secretary in 1947, and was employed in the Personnel Department, where she worked for 22 years. She loved to travel and in the summer of 1971, she circumnavigated the globe by the northern route. She died in 1983.

**Arthur B. Balinger**

1918-1981

Arthur B. Balinger, a U.S. Army Air Corps officer, was a U.S. Army Air Corps officer, and a U.S. Army Air Corps officer, in 1945, and returned to California. He joined the Los Angeles Times as a secretary in 1947, and was employed in the Personnel Department, where she worked for 22 years. She loved to travel and in the summer of 1971, she circumnavigated the globe by the northern route. She died in 1983.

**Robert G. Moses**

1912-1983

Robert G. Moses, a U.S. Army Air Corps officer, was a U.S. Army Air Corps officer, and a U.S. Army Air Corps officer, in 1945, and returned to California. He joined the Los Angeles Times as a secretary in 1947, and was employed in the Personnel Department, where she worked for 22 years. She loved to travel and in the summer of 1971, she circumnavigated the globe by the northern route. She died in 1983.
Harry R. Major, Los Angeles (12/3/14), at age 92; Harry had two zo‐ matically-disabled children, one who was away from home due to property division; he asked that his children be honored; son, Anthony, lives in northwestern Pa.; daughter, Barbara, lives in Allegheny Co., Pa. Many thanks to his family and friends for their support through the years.

Shirley Whalee Dickson, Stockton, CA (9/4/14), at age 82, means the world to me. "My Shirley," as her family affectionately called her, was a warm, gentle, and dedicated woman with a positive outlook on life. She had a deep love for her family, her community, and her faith. Shirley’s selflessness and kindness shone through in her daily life, as she dedicated herself to helping others and making a difference in her community. Her legacy will continue to inspire those she touched.

E. Alfred Silva, Hilo, HI (10/3/14), at age 91; E. Alfred joined the US Army in 1944, before entering Pomona College, to serve in the European Theater of Operations, as part of the drive to liberate the Netherlands. He and his wife, Betty, who passed away in 2009, had two sons, Michael and David, and one daughter, Carol. They were active in the community and served on several boards, including the Kiwanis Club of Hilo. Alfred was a lifelong member of the Hilo YMCA and was a member of the Hilo Chamber of Commerce. He is survived by his sons, daughters, grandchildren, and great grandchildren.

Donna L. Rodgers, Leesville, La. (9/19/14), at age 80; Donna was a member of the National Guard and a graduate of Pomona College. She was a dedicated teacher and a beloved member of her community. She is survived by her children, grandchildren, and great grandchildren.

Frank P. Stigant, Scarsdale, NY (11/3/14), at age 91; Frank was a member of the Pomona College Class of 1949, and served in the US Navy during World War II. He received a degree in chemistry from Pomona College in 1949, and later went on to receive a Ph.D. in chemistry from the University of Chicago in 1954. After serving in the US Navy, Frank worked at the Oak Ridge National Laboratory, where he helped develop the first nuclear reactor. He later went on to work at the Los Alamos National Laboratory, where he contributed to the development of the first atomic bomb. Frank was a dedicated family man and a devoted member of the Pomona College community. He is survived by his wife, two children, and several grandchildren.

Evelyn Zornes, who was teaching art at Pomona. Evelyn was a beloved member of the Pomona College community, and her art classes were a favorite among students. She is survived by her children, grandchildren, and great grandchildren.

Harry R. Major, Los Angeles (12/3/14), at age 92; Harry had two zo‐ matically-disabled children, one who was away from home due to property division; he asked that his children be honored; son, Anthony, lives in northwestern Pa.; daughter, Barbara, lives in Allegheny Co., Pa. Many thanks to his family and friends for their support through the years.
1959 John H. Wilson, OAC (1957-79), at age 67, Phi Beta Kappa, Pomona President’s Award, Ann Arbor, MI.

1960 Novoa Jo Whitehead, Ca 1 (12/12/23), at age 75, Delta Sigma Theta, Phi Beta Kappa, Pomona, Portola Valley, CA, in March.

1960 Jerrold C. Silverstein, Ca 1 (11/23/34), at age 76, Sigma Nu, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Nicols Whitehead, Ca 1 (12/5/39), at age 75, Delta Sigma Theta, Phi Beta Kappa, Pomona, Portola Valley, CA, in March.

1960 Josephine Rivers, Ca 1 (11/26/23), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Alphonse Casby, Ca 1 (11/4/23), at age 76, Sigma Nu, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Daniel L. O’Neil, Tien, Ca 1 (3/9/39), at age 74; Ne Alpha Phi, acting on various campus committees.

1960 Donald L. Hines, Ca 1 (11/26/34), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Melvin L. Martin, Ca 1 (11/2/34), at age 76, Sigma Nu, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Vincent P. Fawcett, Ca 1 (11/27/38), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 John M. Feldman, Ca 1 (11/26/29), at age 76, Sigma Nu, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 James A. Sullivan, Ca 1 (11/22/30), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert H. Poole, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert R. Poole, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.

1960 Robert “Bob” Franz, Ca 1 (11/27/35), at age 76, Phi Beta Kappa, Pomona, Los Angeles, CA, in valedictory in-year, making the 40th.
Alumni Weekend 2014

drew alumni back to campus from all across the country and around the globe, with more than 1,500 attendees taking part in one or more days of the four-day event. In its 50th reunion year, the Class of 1964 set new records for attendance and for reunion giving. Pomona’s first Diamond Reunion, for alumni 60 or more years out from graduation, was a huge success, with 75 attendees at the Saturday gathering.

Next year’s Alumni Weekend has been scheduled for April 30 to May 3, 2015, and will feature the first-ever 47-year reunion.

PHOTOS BY CARRIE ROSEMUSA

Alumni Weekend 2014

drew alumni back to campus from all across the country and around the globe, with more than 1,500 attendees taking part in one or more days of the four-day event. In its 50th reunion year, the Class of 1964 set new records for attendance and for reunion giving. Pomona’s first Diamond Reunion, for alumni 60 or more years out from graduation, was a huge success, with 75 attendees at the Saturday gathering.

Next year’s Alumni Weekend has been scheduled for April 30 to May 3, 2015, and will feature the first-ever 47-year reunion.

PHOTOS BY CARRIE ROSEMUSA

Alumni Weekend 2014

drew alumni back to campus from all across the country and around the globe, with more than 1,500 attendees taking part in one or more days of the four-day event. In its 50th reunion year, the Class of 1964 set new records for attendance and for reunion giving. Pomona’s first Diamond Reunion, for alumni 60 or more years out from graduation, was a huge success, with 75 attendees at the Saturday gathering.

Next year’s Alumni Weekend has been scheduled for April 30 to May 3, 2015, and will feature the first-ever 47-year reunion.

PHOTOS BY CARRIE ROSEMUSA
“Look out!
Tall human in blue, running!”

Is that really what they’re saying?
(Story on page 29)